omRon

Sysmac Catalogue

One Machine Control
4th Edition

News

[^0]

Sysmac catalogue

This document is a selection and design guide helping you to create fast, flexible and reliable machines. Sysmac Automation Platform provides an integrated solution consisting of the best in class machine controller working seamlessly with the best in class field devices across the fastest machine network in the market - EtherCAT. Sysmac Automation Platform is programmed, configured and simulated by one software - Sysmac Studio, and accessed through one connection, Ethernet/IP.

Content

Sysmac Automation Platform:
One connection, one software, one controller. 02
Sysmac familiy selection tables 22
Main content 29

One connection
 Seamless machine control and factory communication

One machine control through one connection and one software is how we define the new Sysmac automation platform. The new NJ machine automation controller integrates motion, logic sequencing, safety, vision and networking under one software: Sysmac Studio. This one software provides a true Integrated Development Environment (IDE) that includes a custom 3D motion simulation tool. The NJ controller comes standard with built-in EtherCAT and EtherNet/IP. The two networks with one connection purpose is the perfect match between fast real time machine control and data plant management.

EtherCAT: the ONE machine network

» Up to 192 slaves
» Fastest machine network on the market
» Noise immunity to stringent Omron standards
» Embedded in Omron servo drive, inverter, vision sensor and I/O
» Uses standard STP Ethernet cable with RJ45 connectors

Integrated safety into machine automation
» FSoE - Safety over EtherCAT
» Flexible system with distributed safety I/O
» Conforms with IEC61131-3 standard programming
» PLCopen Function Blocks for Safety

One software

Sysmac Studio to develop machines

Created to give you complete control over your automation system, Sysmac Studio integrates configuration, programming and monitoring. Graphicsoriented configuration allows quick set-up of the controller, field devices and networks while machine and motion programming based on IEC standard and PLCopen Function Blocks for Motion Control cuts programming time. Smart Editor with On-line debugging helps quick and error free programming. Advanced simulation of sequence and motion control, and data trace reduce machine tuning and set-up.

Data tracing

Easy system tuning thanks to integrated and synchronised data tracing of motion commands, position and speed feedback and I/O status and values.

One controller NJ Series machine controller

The NJ-Series Machine Automation Controller is at the heart of the new Sysmac platform. One integrated machine controller that offers speed, flexibility and scalability of software centric architecture without compromising on the traditional reliability and robustness that you have come to expect from Omron PLCs. The NJ-Series is designed to meet extreme machine control requirements in terms of motion control speed and accuracy, communication, security and robust system. You just create...

Application libraries

- FB library option for packaging engineering (Rotary Knife, Winder/Unwinder, Temperature Control...)

Motion control

- Up to 64 axis control
- Single axis moves and axes interpolation
- 32 axes / 500 us cycle time
- Electronic cams and gearboxes
- E-cam with on-the-fly change
- Full control of Axes Group Position
- Control of up to 8 Delta robots in $2 \mathrm{~ms} / 4$ Delta robots in 1 ms
- Integrated robotics FB library for Delta-3 control

System robustness

- One event log for controller, field devices and networks
- Standard PLC system check: Watch-Dog Timer, memory check, network topology check, etc.

Hardware design

- Architecture based on new Intel CPU
- The most compact controller in its class
- Built-in USB port and SD card slot
- Fan-less cooling
- Specific power supply design: safe shutdown, boot-up time < 12 s

Standard factory network

- Programming
- Other machine controllers
- HMI / SCADA
- IT systems
- Standard protocols and services: TCP/IP, FTP, NTP, SNMP
- CIP protocol
- Database connection FB's for Microsoft SQL Server, Oracle, IBM DB2, MySQL and Firebird

Standard machine network

- Servos EthercAT.
- Inverters
- Robotics
- Vision systems
- Distributed I/O
- Safety
- Sensing

NJ series

CPU Unit	Unit type			Axes
NJ501	Standard	NJ Robotics	NJ with SQL Client	16, 32, 64
NJ301	Standard			4,8

Standard programming

- Fully conforms with IEC 61131-3 standards
- PLCopen Function Blocks for Motion Control

NA series

The next generation of machine interface

An HMI that is dynamic, intuitive and predictive makes industrial machines more attractive and competitive. The new Omron HMI enables faster, more efficient control and monitoring - and a more natural, proactive relationship between operator and machine. The design has been based on real applications and customer requirements, a future- proofed, scalable platform that will evolve with their ever-changing needs, allowing real time reaction to events. As part of the system family, the NA Series is fully aware of the total machine.

Hardware design

- Architecture based on Intel

- Fan-less cooling
- Water and dust proof design - IP65
- SD card slot for transfer/store projects and data logging

Connectivity

- 3 x USB ports: USB memory and programming
- 2 x Ethernet ports: for machine network / IT systems and programming

NA machine interface features

- Architecture based on Intel
- Widescreen models: 7, 9, 12 and 15 inches
- 1280×800 high resolution display
- One integrated project in the Sysmac Studio: NJ Controller, Safety, Vision and Machine interface

- Display size from 7-inch up to 15 -inch
- Widescreen in all models
- 1280×800 resolution for the 12 -inch and 15 -inch models
- 800×480 resolution for the 7 -inch and 9 -inch models
- Available in black and silver frame colours

IAG - Intelligent Application Gadgets

- Graphics collection from the machine parts
- Embedded code within an IAG with the VB.net standard functionality
- Make your own IAG collection and share them between projects, like a Function Block

Sysmac Studio

- NA HMI programming as a device in the Sysmac Studio
- NJ controller variables (Tags) in the NA project
- Multiple-access level security with password protection
- Visual Basic programming with VB.net
- NA application testing with the NJ machine controller program via the Simulator in the Sysmac Studio

NX I/O

Speed and accuracy for machine performance

Based on an internal high-speed bus running in synchronisation with the EtherCAT network and using the time-stamp function, the NX I/O can be controlled with microsecond accuracy and with nanosecond resolution. The I/O range consists of over 70 models including position control, temperature inputs and integrated safety.

EtherCAT.

EtherCAT connectivity

- Distributed clock to ensure I/O response with less than $1 \mu \mathrm{~s}$ jitter
- Safety over EtherCAT (FSoE)

EtherCAT coupler

- Up to 1024 byte input / 1024 byte output
- Automatic backup/restore of all I/O unit parameters. Except Safety Control unit and Safety I/O units

Digital I/O

- Units for 4, 8 or 16 points
- Standard, high-speed and time-stamp models

NX I/O features

- NsynX technology provides deterministic I/O response with nanosecond resolution
- Digital I/O: high-speed and time-stamp models (NsynX)
- Analogue I/O: high performance models offer $10 \mu \mathrm{~s}$ conversion time per channel and 1:30000 resolution
- Detachable front connector with push-in type screwless terminals on all NXI/O units
- On/Offline configuration, simulation, and unified troubleshooting in the Sysmac Studio software
- High signal density; up to 16 I/O points in 12 mm width

NsynX technology

The NsynX technology is provided by the internal high-speed bus synchronised with the EtherCAT network. This technology is designed for machine control and includes:

- I/O units with distributed clock
- High-speed I/O units synchronised with the EtherCAT cycle
- I/O units with Time-Stamp function (accuracy < $1 \mu \mathrm{~s}$)

Time stamp sequence example

Analogue I/O

- +/-10V voltage and 4-20 mA current signals
- 2 , 4 or 8 channels per input unit
- 2 or 4 channels per output unit
- Standard and highperformance models

Safety I/O

- Up to 8 safety input points per unit
- Freely allocation of the Safety I/O units
- Freely allocation of the Safety I/O units on the internal high speed bus.

Position interface

- Encoder input units for connection of external axes to the Sysmac system
- Incremental and absolute encoder support
- Positioning control unit with pulse train output
- Fast and secure screwless push-in connections
- Removable I/O connectors for easy pre-wiring, testing and system maintenance

NX safety control

Integrated safety into machine automation

The Sysmac platform integrates a safety solution within our one connection and one software concept. One connection is realised though the use of Safety over EtherCAT -FSoE- protocol. The One software is achieved by using the Sysmac Studio for configuration, programming and maintenance. The NX safety system consists of safety controller and safety I/O units. Both the safety controller and safety I/O can be freely distributed in an I/O rack throughout the network, mixing them in any combination with standard NX I/O.

NX safety features

- The safety controller meets PLe according to the ISO 13849-1 and SIL3 according to IEC 61508
- Flexible system lets you freely mix safety controller and safety I/O units with standard NX I/O
- Integration in One software, Sysmac Studio
- Certified programs can be reused, which reduces the amount of verification work

ISO 13849-1, PLe
IEC 61508, SIL3
\qquad

Safety integration in one software

- Integrated Development Environment in Sysmac Studio provides one common software for hardware configuration, programming and maintenance of the Sysmac platform
- 79 safety FB/FN conforming with IEC 61131-3 standard programming
- PLCopen Function Blocks for safety

Safety over EtherCAT frame

```
CDM Safe data CRC_0 Safe data CRC_1 ... Conn ID
```


NX safety I/O

- Up to 8 safety input points per unit
- High connectivity I/O units for direct connection to a variety of devices
- I/O data monitoring in the NJ controller project

Accurax G5 servo system

At the heart of every great machine

Great machines are born from a perfect match between control and mechanics. G5 gives you that extra edge to build more accurate, faster, smaller and safer machines.

EthercAT:

EtherCAT connectivity

- Compliant with CoE -CiA402 Drive profile-
- Cyclic Synchronous Position, Velocity and Torque modes
- Embedded Gear Ratio, Homing and Profile Position mode
- Distributed clock to ensure high precision synchronisation

Safety conformance

- PL-d according ISO 13849-1
- STO: IEC61800-5-2

SUD

- SIL2 according to EN61508

Accurax G5 servo system features

- Compact size servo drives with EtherCAT connectivity built-in
- High-response frequency of 2 kHz
- Load vibration suppression
- Embedded Safety conforming ISO 13849-1 Performance Level d
- Advanced tuning algorithms (Anti-vibration function, torque feedforward, disturbance observer)
- Wide range of linear and rotary servo motors

Improved rotary motors

- Low cogging torque servo motors
- High accuracy provided by 20 bit encoder
- IP67 for all motors and connectors
- Large range of motors from 0.16 Nm up to 96 Nm nominal torque (224 Nm peak)

Ironless linear motors

- Compact, efficient design
- Excellent force-to-weight ratio
- No latching force

Iron-core linear motors

- Compact, flat design
- Optimum ratio between force and volume
- Weight-optimized magnetic track

MX2 and RX inverter series

Drive solution for machine automation

Thanks to its advanced design and algorithms, the MX2 inverter provides smooth control down to zero speed, plus precise operation for cyclic operations and torque control capability in open loop. The RX series combines high performance, application functionality and customisation to match the precise requirements. Both, the MX2 and RX inverter series are fully integrated within the Omron Sysmac automation platform.

Torque control in open loop

- Ideal for low to medium torque applications
- Can replace a flux vector inverter or servo drive in suitable systems

Quick response to load fluctuation

- Stable control without decreasing machine speed improves quality and productivity

Time

MX2
EthercAT. ${ }^{*}$

MX2 features

- Power range up to 15 kW
- Torque control in open loop, ideal for low to medium torque applications
- 200\% starting torque near stand-still operation (0.5 Hz)
- Double rating VT 120\%/1 min and CT 150\%/1 min
- IM and PM motor control
- Drive Programming
- 24 VDC backup supply for control board and communications
- Built-in application functionality (i.e. Brake control)

RX features

- Power range up to 132 kW
- Sensor-less and closed-loop vector control
- High starting torque in open-loop (200% at 0.3 Hz)
- Full torque at 0 Hz in closed-loop
- Double rating VT 120\%/1 min and CT 150\%/1 min
- Drive Programming
- Built-in application functionality (i.e. ELS - Electronic Line Shaft-)

FQ-M vision sensor

Designed for object tracking

The FQ-M series is a vision sensor designed specifically for pick and place applications. It comes with EtherCAT embedded and can be configured and monitored from Sysmac Studio software. The FQ-M series is compact, fast and includes an incremental encoder input for easy tracking and calibration.

Advanced shape search technology

Varying material ie. shiny

Overlapping products

Product detection: 10 pcs with rotation < 200 ms

Detection

- Up to 5000 pieces per minute with 360 degree rotation
- Stable and robust detection under changeable environmental conditions

Design

- Camera and image processing in one
- Standard C-mount lenses; choose the field of view and focus distance you need
- Variety of industrial connector types (angled, straight) for correct mounting
- EtherCAT port for object tracking
- Ethernet port for advanced configuration and monitoring
- Vision sensor with encoder input for tracking function

Software tool

- Fully integrated within the Sysmac Studio software tool
- Intuitive and icon driven set-up and configuration
- Trending and logging function

FH vision system Flexible solution for machine vision

The FH vision system is optimized to detect the position and orientation of any object at high speed and with high accuracy. The built-in EtherCAT communications enable reliable and easy networking with motion control, increasing the overall machine performance. A flexible machine vision tailored for quality inspection.

Multiple inspection

- Powerful 4 -core i7 parallel processor
- Up to 8 camera by one controller

Wide camera range

- Up to 12 Mpixel
- High speed CMOS camera
- Use different fields of vision and at any angle

Service and Support

PRESENCE

At) Automation Center Kusatsu (PPN), Shanghai (CHN),

Tsunagi laboratory Technical office \quad Premium partner Barcelona (Spain), Mumbai (IND), Chicago (USA) Kusatsu (JPN), Shanghai (CHN), Den Bosch (NL)

COMPETENCE

Our wide network of machine automation specialists will help you to select the right automation architecture and products to meet your requirements. Our flat structure based on expert-to-expert contact ensures that you will have ONE accountable and responsible expert to deal with on your complete project.

As your project matures make use of our Automation centers to test and catch-up with technology trends in motion, robotics, networking, safety, quality control etc. Make use of our Tsunagi (connectivity) laboratory to interface, test and validate your complete system with our new machine network (EtherCAT) and factory network (EtherNet/IP).

We will assign a dedicated application engineer to assist with initial programming and proof testing of the critical aspects of your automation system. Our application engineers have in-depth expertise in and knowledge of networks, PLCs, motion, safety and HMIs when applied to machine automation.

CONFIDENCE

ASSURANCE

During your prototyping phase you will need flexibility in technical support, product supply and exchange. We will assign an inside sales contact to help you source the correct products fast during your prototyping phase.

With our world-wide network for service and support the export of your product is made simple, we will support you on-site with your customer, anywhere in the world. We can arrange a liaison sales engineer to facilitate training, spare parts supply or even machine commissioning. All this in a localised language with localised documentation giving you complete peace of mind.

Serial production

As your production increases we will engage in supplying you within 24 hrs and repairing within 3 days. All our products are global products meeting global standards - CE, cULus, NK, LR -

Sysmac family

Machine controller

Model	NJ5	NJ5 robotics	NJ5 with database connection	NJ3
Description	NJ5 series Machine Controller with Sequence and Motion functionality	NJ5 series Machine Controller with Sequence, Motion and Robotics functionality	NJ5 series Machine Controller with Sequence, Motion and SQL Client functionality	NJ3 series Machine Controller with Sequence and Motion functionality
Task	Multi-tasking program	Multi-tasking program	Multi-tasking program	Multi-tasking program
Software	Sysmac Studio	Sysmac Studio	Sysmac Studio	Sysmac Studio
Programming	- Ladder - Structured Text - In-Line ST	- Ladder - Structured Text - In-Line ST	- Ladder - Structured Text - In-Line ST	- Ladder - Structured Text - In-Line ST
Standard programming	- IEC 61131-3 - PLCopen Function Blocks for Motion Control	- IEC 61131-3 - PLCopen Function Blocks for Motion Control	- IEC 61131-3 - PLCopen Function Blocks for Motion Control	- IEC 61131-3 - PLCopen Function Blocks for Motion Control
Program capacity	20 MB	20 MB	20 MB	5 MB
SD Memory card	SD and SDHC Memory card			
Built-in port	- EtherNet/IP - EtherCAT - USB 2.0	- EtherNet/IP - EtherCAT - USB 2.0	- EtherNet/IP - EtherCAT - USB 2.0	- EtherNet/IP - EtherCAT - USB 2.0
EtherCAT slaves	192	192	192	192
Number of axes	64, 32, 16	64,32, 16	64,32, 16	8, 4
Servo drive	Accurax 65/EtherCAT	Accurax G5/EtherCAT	Accurax 65/EtherCAT	Accurax 65/EtherCAT
Motion control	- Axes groups interpolation and Single axis moves - Electronic cams and gearboxes - Direct position control for axis and groups	- Axes groups interpolation and Single axis moves - Electronic cams and gearboxes - Direct position control for axis and groups - Up to 8 Delta Robot control	- Axes groups interpolation and Single axis moves - Electronic cams and gearboxes - Direct position control for axis and groups	- Axes groups interpolation and Single axis moves - Electronic cams and gearboxes - Direct position control for axis and groups
Local 1/0	CJ series units	CJ series units	CJ series units	CJ series units
Remote I/O	NX I/O units/EtherCAT	NX I/0 units/EtherCAT	NX I/0 units/EtherCAT	NX I/0 units/EtherCAT
Mounting	DIN rail	DIN rail	DIN rail	DIN rail
Global standards	CE, cULus, NK, LR			
Ordering information	Page 43			

I/0

Model	NX series I/0	GX series I/O
Type	Modular I/O	Block I/0
Network specification	EtherCAT coupler unit	EtherCAT built-in
Number of units	- Up to 63 I/0 units - Max. 1024 bytes in +1024 bytes out	Block I/0 expandable with one digital I/0 unit (16 points +16 points)
1/0 types	- Digital I/0 - Analog $1 / 0$ - Encoder input - Pulse output - Temperature sensor input - Safety control	- Digital I/0 - Analog $1 / 0$ - Encoder input - Expansion unit
1/0 connection	Screwless push-in terminals	M3 screw terminals (1- or 3- wire DI)
Features	- Automatic and manual address setting - Standard and high-speed inputs - Digital input filtering - Removable push-in I/O terminals - Synchronous $1 / 0$ updates using Distributed Clock - I/0 units with Time Stamp function - High signal density: 16 digital or 8 analog signals in 12 mm width	- Automatic and manual address setting - High-speed input - Digital input filtering - Removable I/O terminals - Expandable digital I/0
Mounting	DIN rail	DIN rail
Ordering information	Page 93	Page 105

Machine interface

Model	NA5-15W	NA5-12W	NA5-9W	NA5-7W
Display	TFT colour LCD	TFT colour LCD	TFT colour LCD	TFT colour LCD
Display size	15-inch widescreen	12-inch widescreen	9 -inch widescreen	7 -inch widescreen
Resolution	1280×800 pixels	1280×800 pixels	800×480 pixels	800×480 pixels
Display colour	24 bit full colour			
Operator input	- Touch screen - 3 programmable function keys	- Touch screen - 3 programmable function keys	- Touch screen - 3 programmable function keys	- Touch screen - 3 programmable function keys
Built-in port	- $2 \times$ Ethernet - $3 \times$ USB 2.0	- $2 \times$ Ethernet - $3 \times$ USB 2.0	- $2 \times$ Ethernet - $3 \times$ USB 2.0	- $2 \times$ Ethernet - $3 \times$ USB 2.0
Power requirements	19.2 to 28.8 VDC			
Programming	Sysmac Studio	Sysmac Studio	Sysmac Studio	Sysmac Studio
IP ratings	Front panel IP65	Front panel IP65	Front panel IP65	Front panel IP65
Memory card	SD and SDHC memory card			
Features	- NJ controller variables (Tags) - Multiple-access level security with password protection - Visual Basic programming with VB.net - Integrated simulator in the Sysmac Studio	- NJ controller variables (Tags) - Multiple-access level security with password protection - Visual Basic programming with VB.net - Integrated simulator in the Sysmac Studio	- NJ controller variables (Tags) - Multiple-access level security with password protection - Visual Basic programming with VB.net - Integrated simulator in the Sysmac Studio	- NJ controller variables (Tags) - Multiple-access level security with password protection - Visual Basic programming with VB.net - Integrated simulator in the Sysmac Studio
Options	Black and silver frame colours			
Ordering information	Page 57			

Safety

Model	NX safety controller	NX safety input unit	NX safety output unit
Network specification	FSoE - Safety over EtherCAT	FSoE - Safety over EtherCAT	FSoE - Safety over EtherCAT
Performance level	PLe (EN ISO 13849-1)	PLe (EN ISO 13849-1)	PLe (EN ISO 13849-1)
Safety integrity level	SIL3 (IEC 61508)	SIL3 (IEC 61508)	SIL3 (IEC 61508)
PFH	4.4E-10	3.80E-10	8.80E-10
PFD	7.0E-06 (20 years)	6.6E-06	7.9E-06
TM (Mission time)	20 years	20 years	20 years
Programming	- IEC 61131-3 standard - 79 Safety FB/FUN	-	-
Safety connections	32 connections (NX-SL3300 safety CPU) 128 connections (NX-SL3500 safety CPU)	-	-
I/0 signal	-	- 4 points - 8 points	- 2 points - 4 points
Number of test outputs	-	2	-
1/0 connection	Screwless push-in terminals	Screwless push-in terminals	Screwless push-in terminals
Maximum load current	-	-	$\begin{aligned} & \cdot 2 \mathrm{~A} \\ & \cdot \\ & \cdot 0.5 \mathrm{~A} \end{aligned}$
Features	- Freely mix with standard NX I/0 - Flexibility and reusability of the programming code - Variables are part of the NJ controller project	- Freely mix with standard NX I/O - High connectivity for direct connection to safety input devices - I/O data monitoring in the NJ controller project	- Freely mix with standard NX I/O - High connectivity for direct connection to safety input devices - I/O data monitoring in the NJ controller project
Mounting	DIN rail	DIN rail	DIN rail
Ordering information	Page 113		

AC servo system

Model	Accurax 65 rotary motor				Accurax 65 high inertia rotary motor		
Rated speed	3,000 rpm	2,000 rpm	$1,500 \mathrm{rpm}$	1,000 rpm	3,000 rpm	2,000 rpm	1,500 rpm
Maximum speed	4,500 to 6,000 rpm	3,000 rpm	2,000 to 3,000 rpm	2,000 rpm	5,000 rpm	3,000 rpm	1,500 to 3,000 rpm
Rated torque	0.16 Nm to 15.9 Nm	1.91 Nm to 23.9 Nm	47.8 Nm to 95.5 Nm	8.59 Nm to 57.3 Nm	0.64 Nm to 2.4 Nm	4.77 Nm to 23.9 Nm	47.8 Nm
Sizes	50 W to 5 kW	400 W to 5 kW	$7,5 \mathrm{~kW}$ to 15 kW	900 W to 6 kW	200 kW to 750 kW	1 kW to 5 kW	7,5 kW
Applicable servo drive	Accurax 65 rotary servo drive						
Encoder resolution	20-bit incremental/ 17-bit absolute	20-bit incremental/ 17-bit absolute	17-bit absolute	20-bit incremental/ 17-bit absolute	20-bit incremental/ 17-bit absolute	20-bit incremental/ 17-bit absolute	17-bit absolute
IP rating	IP67	IP67	IP67	IP67	IP65	IP67	IP67
Ordering information	Page 157						

Robots

Model		Accurax linear motor axis
Type		Linear motor axis
Continuous force range	48 N to 760 N	
Peak force range		105 N to $2,000 \mathrm{~N}$
Maximum speed	$5 \mathrm{~m} / \mathrm{s}$	
Magnetic attraction force	300 N to $4,440 \mathrm{~N}$	
Applicable servo drive		Accurax 65 linear drive
Ordering information	Page 193	

Model	Washdown Delta robot	Washdown mini Delta robot	Delta robot XL	Delta robot	Mini Delta robot
Max. Payload	3 kg	1 Kg	2 kg	2 kg	1 Kg
Degrees of freedom	$3+1$ (rotation optional)				
Rated working range	$\emptyset 1,100 \times 450 \mathrm{~mm}$	$\begin{aligned} & \emptyset 500 \times 155 \mathrm{~mm} / \emptyset 450 \times \\ & 135 \mathrm{~mm} \\ & \text { (with rotational axis) } \end{aligned}$	$\emptyset 1300 \times 400 \mathrm{~mm}$	$\emptyset 1,100 \times 400 \mathrm{~mm}$	$\begin{aligned} & \emptyset 500 \times 155 \mathrm{~mm} / \emptyset 450 \times \\ & 135 \mathrm{~mm} \\ & \text { (with rotational axis) } \end{aligned}$
Cycle time	25/305/25 mm (0.1 kg): Up to 150 cycle/ min	$25 / 305 / 25 \mathrm{~mm}(0.1 \mathrm{~kg})$: Up to 200 cycle/min	$25 / 305 / 25 \mathrm{~mm}(0.1 \mathrm{Kg})$: Up to 120 cycle/min	25/305/25 mm (0.1 kg): Up to 150 cycle/ min	25/305/25 mm (0.1 kg): Up to 200 cycle/min
Position repeatability	$\pm 0.2 \mathrm{~mm}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$	$\pm 0.2 \mathrm{~mm}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$	$\pm 0.2 \mathrm{~mm}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$	$\pm 0.3 \mathrm{~mm}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$	$\pm 0.2 \mathrm{~mm}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$
Angular repeatability	$\pm 0.1^{\circ}(\mathrm{q})$	$\pm 0.3^{\circ}(\mathrm{q})$	$\pm 0.3^{\circ}$ (q)	$\pm 0.4{ }^{\circ}$ (q)	$\pm 0.3^{\circ}$ (q)
Protection class	IP67	IP65	IP65	IP65	IP65
Rotational axis type	Tool Center Point mounting - Low or High inertia -	Shaft mounting	Shaft mounting	Shaft mounting	Shaft mounting
Machine controller	NJ5 Robotics				
Servo drive	Accurax 65 rotary servo drive - EtherCAT	Accurax 65 rotary servo drive - EtherCAT	Accurax 65 rotary servo drive - EtherCAT	Accurax 65 rotary servo drive - EtherCAT	Accurax 65 rotary servo drive - EtherCAT
Ordering information	Page 203				

Frequency inverter

Model	RX	MX2
400 V three-phase	0.4 kW to 132 kW	0.4 to 15 kW
200 V three-phase	0.4 kW to 55 kW	0.1 kW to 15 kW
200 V single-phase	N/A	0.1 kW to 2.2 kW
Control method	- Sensor-less and closed-loop vector control	- V/F control - Sensor-less vector control
Torque features	$\begin{aligned} & 200 \% \text { at } 0.0 \mathrm{~Hz} \text { (CLV) } \\ & 150 \% \text { at } 0.3 \mathrm{~Hz} \text { (0LV) } \end{aligned}$	200\% at 0.5 Hz
Connectivity	EtherCAT option board	EtherCAT option board
Logic Programming	Standard Firmware	Standard Firmware
Customisation options	-	IP54 enclosure
Ordering information	Page 220	Page 237

Vision

Model	FQ-M	FH
Description	Designed for object tracking	Flexible machine vision
Interface	EtherCAT and Ethernet built-in	EtherCAT, Ethernet, USB and serial ports built-in, SD card
Inspection items	Shape search, search labelling, edge position	Over 100 processing items
Registered scenes	32	32
Image processing method	Real colour or monochrome	Real colour or monochrome
Camera resolution	752×480	4096×3072
Features	- Fast and powerful object recognition - Encoder input for object tracking and calibration - Contour based object detection - Sysmac Studio software for vision system operation and setting	- Powerful 4-core i7 parallel processor - High speed CMOS camera - Up to 8 camera by one controller - Advanced shape search technology
Software	Sysmac Studio	Sysmac Studio
Supply voltage	24 VDC	24 VDC
Digital I/0	9 in/5 out	17 in/37 out
Ordering information	Page 267	Page 253

Sensing

DISPLACEMENT SENSOR

Model	zw Series	N -Smart series	E3X/E3C/E2C
Measurement methods	White Light Confocal Fiber Principle	-	-
Applications	Height, thickness	-	
Surfaces	Diffuse, shiny, mirror, glass, black rubber, metal, ceramics	-	-
Measurement range	- Min: $7 \pm 0.3 \mathrm{~mm}$, - Max: $40 \pm 6 \mathrm{~mm}$	-	-
Resolution	$0.01 \mu \mathrm{~m}$ to $0.25 \mu \mathrm{~m}$	-	-
Linearity	$\pm 0.8 \mu \mathrm{~m}$ to $7 \mu \mathrm{~m}$	-	-
Special features	- Ethernet built-in - EtherCAT built-in - RS-232C - Analog VDC/mA - Sysmac Studio	- High speed transmission of 1/0-signals and incident values - Up to 30 amplifiers on one communication unit - Synchronized signal transmission - Slave unit for decentralized machine installation	- High speed transmission of I/0-signals - Up to 30 amplifiers on one communication unit
Network specification	-	EtherCAT communication unit	EtherCAT communication unit
Connectable sensors	-	Up to 30	Up to 30
Amplifier types	-	$\begin{aligned} & \text { - E3NXX-FAO } \\ & \text { - E3NC-LAO } \\ & \text { - E3NC-SAO } \\ & \text { - E9NC-AAO } \end{aligned}$	- E3X-HDO - E3X-DAO-S - E3X-MDAO - E3C-LDAO - E2C-EDAO
Mounting	-	DIN rail	DIN rail
Ordering information	Page 275	Page 284	Page 290

Software

Sysmac Studio

The Sysmac Studio provides one design and operation environment for configuration, programming, simulation and monitoring

- One software for motion, logic sequencing, safety, vision and HMI
- Fully compliant with open standard IEC 61131-3
- Supports Ladder, Structured Text and In-Line ST programming with a rich instruction set
- CAM editor for easy programming of complex motion profiles
- One simulation tool for sequence and motion in a 3D environment
- Advanced security function with 32 digit security password
- PLCopen Function Blocks for Motion Control and Safety

Ordering information

Ethernet and EtherCAT media

Model	Ethernet switch		
Number of ports	5	5	3
Functions	- QoS for EtherNet/IP - Auto MDI/MDIX - Failure detection: Broadcast storm and LSI error detection 10/100BASE-TX, AutoNegotiation	- QoS for EtherNet/IP - Auto MDI/MDIX	- QoS for EtherNet/IP - Auto MDI/MDIX
Power requirements	24 VDC ($\pm 5 \%$)	24 VDC ($\pm 5 \%$)	24 VDC ($\pm 5 \%$)
Dimension	$48 \times 78 \times 90 \mathrm{~mm}$	$48 \times 78 \times 90 \mathrm{~mm}$	$25 \times 78 \times 90 \mathrm{~mm}$
Mounting	DIN rail	DIN rail	DIN rail
Ordering information			

Model		EtherCAT junction slave (Branching unit)
Number of ports	6	3
Functions	- Power, Link/Act indicators - Auto MDI/MDIX - Reference clock	- Power, Link/Act indicators - Auto MDI/MDIX - Reference clock
Power requirements	24 VDC (-15\% to +20\%)	24 VDC (-15\% to +20\%)
Dimension	$48 \times 78 \times 90 \mathrm{~mm}$	$25 \times 78 \times 90 \mathrm{~mm}$
Mounting	DIN rail	DIN rail
Ordering information		

Main content

Sysmac Automation Platform			
Machine automation controller		NJ series machine controller	31
Human machine Interface		NA series	51
Remote I/O		NX series I/O	59
		GX series I/O	95
Safety		NX integrated safety	107
AC servo system	Servo drive	Accurax G5 rotary drive	115
		Accurax G5 linear drive	129
	Rotary servo motor	Accurax G5 rotary motor	141
	Linear servo motor	Accurax linear motor	165
Robot		Accurax linear motor axis	181
		Delta robot	195
Frequency inverter		RX frequency inverter	207
		MX2 frequency inverter	225
Vision		FH series	241
		FQ-M series	259
Sensing	Confocal fiber displacement sensor	ZW series	269
	Fiber/Laser photoelectric/ Proximity sensors	N -Smart series sensor	277
		E3X/E3C/E2C series sensor	285
Software		Sysmac Studio	291
		CX-CompoletSYSMAC Gateway	301
Ethernet and EtherCAT media			304
Technical documentation			306

NJ3 \square, NJ5 \square

NJ series machine controller

Complete and robust machine automation

The NJ-Series is designed to meet extreme machine control requirements in terms of motion control speed and accuracy, communication, security and robustness.

- Integration of logic and motion in one Intel CPU
- Scalable control: CPUs for 4, 8, 16, 32 and 64 axes
- EtherCAT and EtherNet/IP ports embedded
- Fully conforms to IEC 61131-3 standards
- Certified PLCopen function blocks for motion control
- Linear, circular and spiral (helical) interpolation
- CPU units with SQL client and robotic functionality

System configuration

Specifications

General specifications

Item		NJ \square CPU Unit
Enclosure		Mounted in a panel
Grounding		Less than 100Ω
CPU unit dimensions ($\mathrm{H} \times \mathrm{D} \times \mathrm{W}$)		$90 \mathrm{~mm} \times 90 \mathrm{~mm} \times 90 \mathrm{~mm}$
Weight		550 g (including end cover)
Current consumption		5 VDC, 1.90 A (including SD Memory card and end cover)
Operation environment	Ambient operating temperature	0 to $55^{\circ} \mathrm{C}$
	Ambient operating humidity	10\% to 90\% (with non condensation)
	Atmosphere	Must be free from corrosive gases
	Ambient storage temperature	-20 to $75^{\circ} \mathrm{C}$ (excluding battery)
	Altitude	2,000 m or less
	Pollution degree	2 or less: Conforms to JIS B3502 and IEC 61131-2.
	Noise immunity	2 kV on power supply line (conforms to IEC 61000-4-4.)
	Overvoltage category	Category II: Conforms to JIS B3502 and IEC 61131-2
	EMC immunity level	Zone B
	Vibration resistance	Conforms to IEC60068-2-6 5 to 8.4 Hz with 3.5 mm amplitude, 8.4 to 150 Hz . Acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for 100 min in X, Y and Z directions (10 sweeps of 10 min each $=100 \mathrm{~min}$ total)
	Shock resistance	Conforms to IEC60068-2-27 $147 \mathrm{~m} / \mathrm{s}^{2}, 3$ times in X, Y and Z directions ($100 \mathrm{~m} / \mathrm{s}^{2}$ for relay output units)
Battery	Life	5 years at $25^{\circ} \mathrm{C}$
	Model	CJ1W-BAT01
Applicable standards		Conforms to cULus, NK, LR and EC directives, KC registration ${ }^{11}$.

*1. Supported only by the CPUs with unit version 1.01 or higher.

Performance specifications

Common performance specifications

Item				NJ5 \square CPU Unit			NJ3 \square CPU Unit	
				NJ501- \square 5 \square	NJ501- 7 4 $\square 0$	NJ501- $\square 3 \square 0$	NJ301-1200	NJ301-1100
Processing speed	Execution time	Ladder diagram instructions (LD, AND, OR and OUT)		1.9 ns min			3.0 ns min	
		Math instructions (LREAL)		26 ns min			42 ns min	
Programming	Program capacity ${ }^{* 1}$	Size		20 MB			5 MB	
		POU	definition	3,000			750	
		POU instance		Sysmac Studio v.1.05 or lower: 6,000Sysmac Studio v.1.06 or higher: 9,000			Sysmac Studio v.1.04 or lower: 1,500 Sysmac Studio v. 1.05 or higher: 3,000	
	Variables capacity	No retain attribute*2		Size: 4 MB Number: 90,000			Size: 2 MB Number: 22,500	
		Retain attribute ${ }^{3}$		Size: 2 MB Number: 10,000			Size: 0.5 MB Number: 2,500 (Sysmac Studio v.1.04 or lower) / 5,000 (Sysmac Studio v.1.05 or higher)	
	Data type	Number		2,000			1,000	
	Memory for	CIO area		6,144 words (CIO 0 to CIO 6143)				
	CJ-Series	Work area		512 words (W0 to W511)				
	units (can be	Holding area		1,536 words (H0 to H1535)				
	specified with	DM area		32,768 words (D0 to D32767)				
	tions for variables.)	EM ar		32,768 words $\times 25$ banks (E0_00000 to E18_32767)			$\begin{aligned} & 32,768 \text { words } \times 4 \text { banks (E0_00000 to } \\ & \text { E3_32767) } \end{aligned}$	
Unit configuration	Maximum number of connectable Units			Maximum per CPU rack or expansion rack: 10 units Entire controller: 40 units				
	Number of expansion racks			3 max.				
	I/O Capacity			2,560 points max. plus EtherCAT slave I/O capacity				
	Power supply to CPU rack and expansion racks	Model		NJ-P $\square 3001$ power supply unit				
			AC power supply	30 to 45 ms22 to 25 ms				
			DC power supply	22 to 25 ms				
Motion control	Number of controlled axes	Number of controlled axes ${ }^{4}$		64 axes max.	32 axes max.	16 axes max.	15 axes max.	15 axes max.
		Number of used real axes ${ }^{\text {² }}$		64 axes max.	32 axes max.	16 axes max.	8 axes max.	4 axes max.
		Number of axes for single-axis control ${ }^{*} 6$		64 axes max.	32 axes max.	16 axes max.	15 axes max.	15 axes max.
		Linear interpolation control		4 axes max. per axes group				
		Circular interpolation control		2 axes per axes group				
	Number of axes groups			32 groups max.				
	Position units			Pulses, millimeters, micrometers, nanometers, degrees or inches				
	Override factors			0.00\% or 0.01\% to 500.00\%				
	Motion control period			Same as process data communications period of EtherCAT communications				
	Cams	Number of cam data points		65,535 points max. per cam table$1,048,560$ points max. for all cam tables			65,535 points max. per cam table 262,140 points max. for all cam tables	
		Number of cam tables		640 tables max.			160 tables max.	

Item				NJ5 \square CPU Unit			NJ3 \square CPU Unit	
				NJ501- 7 5 $\square 0$	NJ501- \square 4 $\square 0$	NJ501- $\square 3 \square 0$	NJ301-1200	NJ301-1100
Communications	Peripheral USB port	Supported services		Sysmac Studio connection				
		Physical layer		USB 2.0-compliant B-type connector				
		Transmission distance		5 m max.				
	Built-in	Physical layer		10 Base-T or 100 Base-TX				
	EtherNet/	Media access method		CSMA/CD				
		Modulation		Baseband				
		Topology		Star				
		Baud rate		100 Mbps (100 Base-TX)				
		Transmission media		STP (shielded, twisted-pair) cable of Ethernet category 5, 5e or higher				
		Transmission distance		100 mmax . (distance between Ethernet switch and node)				
		Number of cascade connections		There are no restrictions if an EtherNet switch is used				
			Number of connections	32				
			Packet Interval ${ }^{\text {² }}$	10 to $10,000 \mathrm{~ms}$ in $1.0-\mathrm{ms}$ increments. ${ }^{8}$ Can be set for each connection. (Data will be refreshed at the set interval, regardless of the number of nodes.)				
			Permissible communications band	$3,000 \mathrm{pps}^{* 9 * 10}$ (including heartbeat)				
			Number of tag sets	32				
			Tag types	Network variables (CIO, Work, Holding, DM and EM Areas.)				
			Number of tags	8 (7 tags if controller status is included in the tag set.)				
			Link data size per node	19,200 bytes max. (total size for all tags.)				
			Data size per connection	600 bytes max.				
			Number of registrable tag sets	32 max. (1 connection = 1 tag set)				
			Tag set size	600 bytes max. (two bytes are used if controller status is included in the tag set.)				
			Multi-cast packet filter*11	Supported.				
			$\begin{array}{\|l\|} \hline \text { Class } 3 \\ \text { (number of } \\ \text { connections) } \end{array}$	32 (clients plus server)				
			UCMM (non-connection type)	Number of clients that can communicate at one time: 32 max. Number of servers that can communicate at one time: 32 max.				
	Built-in EtherCAT port	Number of TCP socket service		$30 \mathrm{max} .{ }^{12}$				
		Communications standard		IEC 61158, Type 12				
		EtherCAT master specifications		Class B (feature pack motion control compliant)				
		Physical layer		100BASE-TX				
		Modulation		Baseband				
		Baud rate		100 Mbps (100BASE-TX)				
		Duplex mode		Automatic				
		Topology		Line, daisy chain and branching				
		Transmission media		Twisted-pair cable of category 5 or higher (double-shielded straight cable with aluminum tape and braiding)				
		Transmission distance		Distance between nodes: 100 mmax .				
		Number of slaves		192 max.				
		Process data size		Inputs/Outputs: 5,736 bytes max. (However, the maximum number of process data frames is 4)				
		Process data size per slave		Inputs/Outputs: 1,434 bytes max.				
		Communications period		500/1,000/2,000/4,000 $\mu \mathrm{s}$			1000, 2000 or $4000 \mu \mathrm{~s}$	
		Sync jitter		$1 \mu \mathrm{~s}$ max.				
Internal clock				At ambient temperature of $55^{\circ} \mathrm{C}$: -3.5 to +0.5 min error per month At ambient temperature of $25^{\circ} \mathrm{C}$: -1.5 to +1.5 min error per month At ambient temperature of $0^{\circ} \mathrm{C}:-3$ to +1 min error per month				

*1. This is the capacity for the execution objects and variable tables (including variable names).
*2. Words for CJ-series units in the holding, DM and EM areas are not included.
*3. Words for CJ-series units in the CIO and work areas are not included.
*4. This is the total for all axis types. The maximum number of TCP socket service of the CPU unit version 1.05 or lower is 8 axes (NJ301-1200), 4 axes (NJ301-1100).
*5. This is the total number of axes that are set as servo axes or encoder axes and are also set as used axes.
${ }^{*} 6$. The maximum number of axes for single-axis control of the CPU unit version 1.05 or lower is 8 axes ($\mathrm{NJ} 301-1200$), 4 axes ($\mathrm{NJ} 301-1100$).
*7. Data is updated on the line in the specified interval regardless of the number of nodes.
*8. The packet interval of the CPU unit version 1.02 or lower is 10 to $10,000 \mathrm{~ms}$ in 1.0 ms increments.
*9. Means packets per second, i.e., the number of communication packets that can be sent or received in one second.
*10. The permissible communications band of the CPU unit version 1.02 or lower is $1,000 \mathrm{pps}$.
*11. An IGMP client is mounted for the EtherNet/IP port. If an Ethernet switch that supports IGMP snooping is used, filtering of unnecessary multicast packets is performed.
*12. The maximum number of TCP socket service of the CPU unit version 1.02 or lower is 16 .

Performance specifications for CPU units with robotic functionality

Item			NJ5 \square CPU Unit			
			NJ501-4500	NJ501-4400	NJ501-4300	NJ501-4310*
Motion control	Robotics	Delta robot	$3+1$ (optional rotational axis) axes per robot			
		Number of Delta robots	8 Delta robots max. (depending on the number of axes supported by the CPU)			

*1. The NJ501-4310 CPU unit only supports one Delta robot.
Note: For robot control by NJ501-4 $\square \square 0$, use the Accurax G5 servo drive with built-in EtherCAT communications, absolute encoder and brake.

Performance specifications for CPU units with database connection

Item			NJ5 \square CPU Unit		
			NJ501-1520	NJ501-1420	NJ501-1320
Programming	Memory for CJ-series units (can be specified with AT specifications for variables)	EM area	$\begin{aligned} & 32,768 \text { words x } 25 \text { banks }{ }^{* 1} \\ & \text { (E0_00000 to E18_32767) } \end{aligned}$		

*1. When the spool function is enabled, the DB connection service uses E9_0 to E18_32767.

Function specifications

Common function specifications

Item				NJ \square CPU Unit I/O refreshing and the user program are executed in units that are called tasks. Tasks are used to specify execution conditions and execution priority.
Tasks	Function	Function		
		Periodically executed tasks		Maximum number of primary periodic tasks: 1 Maximum number of periodic tasks: 3
		Conditionally executed tasks*1		Maximum number of even tasks: 32 When active even task instruction is executed or when condition expression for variable is met.
	Setup	System servic settings	monitoring	The execution interval and the percentage of the total user program execution time are monitored for the system services (processes that are executed by the CPU Unit separate from task execution).
Programming	POUs (program organization units)	Programs		POUs that are assigned to tasks.
		Function blocks		POUs that are used to create objects with specific conditions.
		Functions		POUs that are used to create an object that determine unique outputs for the inputs, such as for data processing.
	Programming languages	Types		Ladder diagrams ${ }^{2}$ and structured text (ST).
	Namespaces ${ }^{3}$			A concept that is used to group identifiers for POU definitions.
	Variables	External access of variables		Network variables (the function which allows access from the HMI, host computers or other controllers)
	Data types	Basic data types		BOOL, BYTE, WORD, DWORD, LWORD, INT, SINT, DINT, LINT, UINT, USINT, UDINT, ULINT, REAL, LREAL, TIME (durations), DATE, TIME_OF_DAY, DATE_AND_TIME and STRING (text strings.)
		Derivative data types		Structures, unions, enumerations
		Structures	Function	A derivative data type that groups together data with different variable types. Number of members: 2,048 max. Nesting levels: 8 max.
			Member data types	Basic data types, structures, unions, enumerations, array variables
			Specifying member offsets	You can use member offsets to place structure members at any memory locations. ${ }^{\text {/3}}$
		Unions	Function	A derivative data type that enables access to the same data with different data types. Number of members: 4 max.
			Member data types	BOOL, BYTE, WORD, DWORD and LWORD.
		Enumerations	Function	A derivative data type that uses text strings called enumerators to express variable values.
	Data type attributes	Array specifications	Function	An array is a group of elements with the same data type. You specify the number (subscript) of the element from the first element to specify the element. Number of dimensions: 3 max. Number of elements: 65,535 max.
			Array specifications for FB instances	Supported.
		Range specifications		You can specify a range for a data type in advance. The data type can take only values that are in the specified range.
		Libraries		User libraries.
Motion control	Control modes			Position control, velocity control, torque control
	Axis types			Servo axes, virtual servo axes, encoder axes and virtual encoder axes
	Positions that can be managed			Command positions and actual positions

Item				NJ \square CPU Unit
Motion control	Single-axis	Single-axis position contol	Absolute positioning	Positioning is performed for a target position that is specified with an absolute value.
			Relative positioning	Positioning is performed for a specified position from the command current position.
			Interrupt feeding	Positioning is performed for a specified travel distance from the position where an interrupt input was received from an external input.
			Cyclic synchronous absolute positioning ${ }^{* 1}$	The function which output command positions in every control period in the position control mode.
		Single-axis velocity control	Velocity control	Velocity control is performed in position control mode.
			Cyclic synchronous velocity control	A velocity command is output each control period in the velocity control mode.
		Single-axis torque control	Torque control	The torque of the motor is controlled.
		Single-axis synchronized control	Starting cam operation	A cam motion is performed using the specified cam table.
			Ending cam operation	The cam motion for the axis that is specified with the input parameter is ended.
			Starting gear operation	A gear motion with the specified gear ratio is performed between a master axis and slave axis.
			Positioning gear operation	A gear motion with the specified gear ratio and sync position is performed between a master axis and slave axis.
			Ending gear operation	The specified gear motion or positioning gear motion is ended.
			Synchronous positioning	Positioning is performed in sync with a specified master axis.
			Master axis phase shift	The phase of a master axis in synchronized control is shifted.
			Combining axes	The command positions of two axes are added or subtracted and the result is output as the command position.
		Single-axis manual operation	Powering the servo	The servo in the servo drive is turned ON to enable axis motion.
			Jogging	An axis is jogged at a specified target velocity.
		Auxiliary functions for single-axis control	Resetting axis errors	Axes errors are cleared.
			Homing	A motor is operated and the limit signals, home proximity signal, and home signal are used to define home.
			Homing with parameter ${ }^{* 1}$	Specifying the parameter, a motor is operated and the limit signals, home proximity signal and home signal are used to define home.
			High-speed homing	Positioning is performed for an absolute target position of 0 to return to home.
			Stopping	An axis is decelerated to a stop.
			Immediately stopping	An axis is stopped immediately.
			Setting override factors	The target velocity of an axis can be changed.
			Changing the current position	The command current position or actual current position of an axis can be changed to any position.
			Enabling external latches	The position of an axis is recorded when a trigger occurs.
			Disabling external latches	The current latch is disabled.
			Zone monitoring	You can monitor the command position or actual position of an axis to see when it is within a specified range (zone).
			Enabling digital cam switches ${ }^{*}$	You can turn a digital output ON and OFF according to the position of an axis.
			Monitoring axis following error	You can monitor whether the difference between the command positions or actual positions of two specified axes exceeds a threshold value.
			Resetting the following error	The error between the command current position and actual current position is set to 0 .
			Torque limit	The torque control function of the Servo Drive can be enabled or disabled and the torque limits can be set to control the output torque.
			Start velocity ${ }^{\text {² }}$	You can set the initial velocity when axis motion starts.
	Axes groups	Multi-axes coordinated control	Absolute linear interpolation	Linear interpolation is performed to a specified absolute position.
			Relative linear interpolation	Linear interpolation is performed to a specified relative position.
			Circular 2D interpolation	Circular interpolation is performed for two axes.
			Axes group cyclic synchronous absolute positioning	A positioning command is output each control period in Position control mode. ${ }^{3}$

Item				NJ \square CPU Unit
Motion control	Axes groups	Auxiliary functions for multi-axes coordinated control	Resetting axes group errors	Axes group errors and axis errors are cleared.
			Enabling axes groups	Motion of an axes group is enabled.
			Disabling axes groups	Motion of an axes group is disabled.
			Stopping axes groups	All axes in interpolated motion are decelerated to a stop.
			Immediately stopping axes groups	All axes in interpolated motion are stopped immediately.
			Setting axes group override factors	The blended target velocity is changed during interpolated motion.
			Reading axes group positions	The command current positions and actual current positions of an axes group can be read. ${ }^{* 3}$
			Changing the axes in a axes group	The composition axes parameter in the axes group parameters can be overwritten temporarily. ${ }^{3}$
	Common items	Cams	Setting cam table properties	The end point index of the cam table that is specified in the input parameter is changed.
			Saving cam tables	The cam table that is specified with the input parameter is saved in non-voltage memory in the CPU unit.
			Generating cam tables* ${ }^{*}$	The cam table that is specified with the input parameter is generated from the cam property and cam mode.
		Parameters	Writing MC settings	Some of the axis parameters or axes group parameters are overwritten temporarily.
			Changing axis parameters* ${ }^{*}$	You can access and change the axis parameters from the user program.
	Auxiliary functions	Count modes		You can select either linear mode (finite length) or rotary mode (infinite length).
		Unit conversions		You can set the display unit for each axis according to the machine.
		Acceleration/ deceleration control	Automatic acceleration/ deceleration control	Jerk is set for the acceleration/deceleration curve for an axis motion or axes group motion.
			\qquad Changing th deceleration rates	You can change the acceleration or deceleration rate even during acceleration or deceleration.
		In-position check		You can set an in-position range and in-position check time to confirm when positioning is completed.
		Stop mode		You can set the stop mode to determine when the immediate stop input signal or limit input signal is valid.
		Re-execution of motion control functions		You can change the input variables for a motion control instruction during execution and execute the instruction again to change the target values during operation.
		Multi-execution of motion control instructions (buffer mode)		You can specify when to start execution and how to connect the velocities between operations when another motion control instruction is executed during operation.
		Continuous axes group motions (transition mode)		You can specify the transition mode for multi-execution of instructions for axes group operation.
		Monitoring functions	Software limits	The movement range of an axis is monitored.
			Following error	The error between the command current value and the actual current value is monitored for an axis.
			Velocity, acceleration rate, deceleration rate, torque, interpolation velocity, interpolation acceleration rate, and interpolation deceleration rate	You can set warning values for each axis and each axes group to monitor them.
		Absolute encoder support		You can use an OMRON G5-series servomotor with an absolute encoder to eliminate the need to perform homing at startup.
		Input signal logic inversion ${ }^{\text {5 }}$		You can inverse the logic of immediate stop input signal, positive limit input signal, negative limit input signal or home proximity input signal.
	External interface signals			The servo drive input signals listed on below are used. Home signal, home proximity signal, positive limit signal, negative limit signal, immediate stop signal and interrupt input signal.
Unit (I/O) management	NX units ${ }^{\text {5 }}$			You can use NX units through the communication coupler unit.
	CJ-Series units	Maximum number of units		40
		Basic I/O units	Chattering and noise countermeasures	Input response times are set.
			Load short-circuit protection and I/O disconnection detection	Alarm information for basic I/O units is read.
	EtherCAT slaves	Maximum number of slaves		192
		Basic I/O	Chattering and noise countermeasures	Input response times are set.

Item				NJ CPU Unit
Communications	Peripheral USB port			A port for communications with various kinds of support software running on a personal computer.
	EtherNet/IP port	Communication protocol		TCP/IP, UDP/IP
		CIP communications service	Tag data links	Programless cyclic data exchange is performed with the devices on the EtherNet/IP network.
			Message communications	CIP commands are sent to or received from the devices on the EtherNet/IP network.
		TCP/IP applications	Socket services	Data is sent to and received from any node on EtherNet using the UDP or TCP protocol. Socket communications instructions are used.
			FTP client ${ }^{*}{ }^{6}$	File can be read from or written to computers to other Ethernet nodes from the CPU unit. FTP client communications instructions are used.
			FTP server	Files can be read from or written to the SD memory card in the CPU unit from computers at other Ethernet nodes.
			Automatic clock adjustment	Clock information is read from the NTP server at the specified time or at specified interval after the power supply to the CPU unit is turned ON. The internal clock time in the CPU unit is updated with the read time.
			SNMP agent	Built-in EtherNet/IP port internal status information is provided to network management software that uses an SNMP manager.
	EtherCAT port	Supported services	Process data communications	Control information is exchanged in cyclic communications between the EtherCAT master and slaves.
			SDO communications	Control information is exchanged in noncyclic event communications between the EtherCAT master and slaves. SDO communications that are defined in the CANopen standard are used
		Network scanning		Information is read from connected slave devices and the slave configuration is automatically generated.
		DC (distributed clock)		Time is synchronized by sharing the EtherCAT system time between all EtherCAT devices (including the master).
		Packet monitoring (only NJ5)		The frames that are sent by the master and the frames that are received by the master can be saved. The data that is saved can be viewed with WireShark or other applications.
		Enable/disable settings for slaves		The slaves can be enabled or disabled as communications targets.
		Disconnecting/connecting slaves		Temporarily disconnects a slave from the EtherCAT network for maintenance, such as for replacement of the slave and then connects the slave again.
		Supported application protocol	CoE	SDO messages that conform to the CANopen standard can be sent to slaves via EtherCAT.
	Communications instructions			The following instructions are supported: CIP communications instructions, socket communications instructions, SDO message instructions, no-protocol communications instructions, protocol macro instructions and FTP client instructions ${ }^{*}$.
Operation management	RUN output contacts			The output on the NJ-P $\square 3001$ power supply unit turns ON in RUN mode.
System management	Event logs	Categories		Events are recorded in the following logs: - System event log - Access event log - User-defined event log
		Number of events per event log		NJ5: 1,024 max. NJ3: 512 max.
Debugging	Online editing			Programs, function blocks, functions and global variables can be changed online, individual POUs can be changed by more than worker working across a network.
	Forced refreshing	Forced refreshing		The user can force specific variables to TRUE or FALSE.
		Number of forced variables	For EtherCAT slaves	64 max.
			For CJ-series units	64 max.
	MC test Run			Motor operation and wiring can be checked from the Sysmac Studio.
	Synchronization			The project file in the Sysmac Studio and the data in the CPU unit can be made the same when online.
	Differentiation monitoring ${ }^{* 1}$	Differentiation monitoring*1		Rising/falling edge of contacts can be monitored.
		Number of contacts* ${ }^{\text {1 }}$		8 max.
	Data tracing	Types	Single triggered trace	When the trigger condition is met, the specified number of samples are taken and then tracing stops automatically.
			Continuous trace	Data tracing is executed continuously and the trace data is collected by the Sysmac Studio.
		Number of simultaneous data trace		$\begin{aligned} & \text { NJ5: } 4 \text { max¹. } \\ & \text { NJ3: } 2 \text { max. } \end{aligned}$
		Number of records		10,000 max.
		Sampling	Number of sampled variables	NJ5: 192 variables max. NJ3: 48 variables max.
		Timing of sampling		Sampling is performed for the specified task period, at the specified time or when a sampling instruction is executed.
		Triggered traces	Triggered traces	Trigger conditions are set to record data before and after an event.
			Trigger conditions	When BOOL variable changes to TRUE or FALSE. Comparison of non-BOOL variable with a constant. Comparison method: Equals (=), greater than (>), greater than or equals (\geq), less than (<), less than or equals (\leq), not equal (\neq).
			Delay	Trigger position setting: A slider is used to set the percentage of sampling before and after the trigger condition is met.
	Simulation			The operation of the CPU unit is emulated in the Sysmac Studio.
Maintenance	Connected port	HMIs connection		Built-in EtherNet/IP port.
		Sysmac Studio	connection	Peripheral USB port or built-in EtherNet/IP port.

Item				$\mathrm{NJ} \square \mathrm{CPU}$ Unit
Reliability	Self-diagnosis	Controller error levels		Major fault, partial fault, minor fault, observation and information.
		User-defined errors	User-defined errors	User-defined errors are registered in advance and then records are created by executing instructions.
			Levels	8 levels
Security	Protecting software assets and preventing operating mistakes	CPU unit names and serial IDs		When going online to a CPU Unit from the Sysmac Studio, the CPU Unit name in the project is compared to the name of the CPU Unit being connected to.
		Protection	User program transfer with no restoration information	You can prevent reading data in the CPU unit from the Sysmac Studio.
			CPU unit write protection	You can prevent writing data to the CPU unit from the Sysmac Studio or SD memory card.
			Overall project file protection	You can use passwords to protect .smc files from unauthorized opening on the Sysmac Studio.
			Data protection	You can use passwords to protect POUs on the Sysmac Studio. ${ }^{3}$
		Verification of operation authority	Verification of operation authority	Online operations can be restricted by operation rights to prevent damage to equipment or injuries that may be caused by operating mistakes.
			Number of groups	$5^{* 8}$
		Verification of user program execution ID		The user program cannot be executed without entering a user program execution ID from the Sysmac Studio for the specific hardware (CPU unit).
SD memory card	Storage type			SD memory card (2GB max.), SDHC memory card
	Application	Automatic transfer from SD memory card ${ }^{* 1}$		The data in the autoload folder on an SD memory card is automatically loaded when the power supply to the controller is turned ON.
		SD memory card operation instructions		You can access SD memory cards from instructions in the user program.
		File operations from the Sysmac Studio		You can perform file operations for Controller files in the SD memory card and read/write standard document files on the computer.
		SD memory card life expiration detection		Notification of the expiration of the life of the SD memory card is provided in a system-defined variable and event log.
Backup functions ${ }^{* 1}$	SD memory card backup functions	Operation	Using front switch	You can use front switch to backup, compare or restore data.
			Using systemdefined variable	You can use system-defined variables to backup or compare data.
			Memory card operations dialog box	Backup and verification operations can be performed from the SD memory card operations dialog box on the Sysmac Studio.
			$\begin{array}{\|l\|} \hline \text { Using } \\ \text { instruction } \end{array}$	Backup operation can be performed by using instruction.
		Protection	Backing up data to the SD memory card	Prohibit SD memory card backup functions.
	Sysmac Studio controller backup functions			Backup, restore and verification operations for units can be performed from the Sysmac Studio.

*1. Supported only by the CPU units with unit version 1.03 or higher.
*2. Inline ST is supported. (Inline ST is ST that is written as an element in a ladder diagram).
*3. Supported only by the CPU units with unit version 1.01 or higher.
*4. Supported only by the CPU units with unit version 1.06 or higher.
*5. Supported only by the CPU units with unit version 1.05 or higher.
*6. Supported only by the CPU units with unit version 1.08 or higher
*7. Maximum number of simultaneous data trace of the NJ501-1 $\square 20$ CPU unit version 1.08 or higher is 2 .
*8. When the NJ501 CPU units with unit version 1.00 is used, this value becomes two.

Function specifications for CPU units with robotic functionality

Item				NJ501-4] 0 CPU Unit
Robot control functions	Axes group	Multi-axes coordinated control	Robot parameter settings	Sets the parameters (such as kinematics type and link length) for the robot.
			Time-specified absolute positioning command	Moves the robot to a specified position in a specified time.
			Synchronization with conveyor	Makes the active TCP follow a workpiece on the conveyor performing the conveyor tracking function.
			Robot jog	Jogs a robot defined by an axes group according the selected target velocity, coordinate system and TCP.
			Transition mode and buffering	Select the method to use between robot instructions to perform smooth trajectories.
	Auxiliary functions	Multi-axes coordinated	User coordinate system	Two types of coordinate systems, Machine Coordinate System (MCS) and User Coordinate System (UCS) can be used for robots.
			Robot tool	Defines multiple TCP's (Tool Center Point) for the robots.
			Inverse kinematics	Transforms the coordinate values ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) of the robot's TCP to the coordinate values of each axis.
			Monitor	Reads the current position and current velocity of the robot.
		functions	Workspace check	Checks if the robot is moving within the definable working volume.

Function specifications for CPU units with database connection

Item		NJ501-1 $\square 20$ CPU Unit
Supported port		Built-in EtherNet/IP port
Supported DB		Microsoft Corporation: SQL Server 2008/2008 R2/2012 Oracle Corporation: Oracle Database $10 \mathrm{~g} / 11 \mathrm{~g}$ International Business Machines Corporation: DB2 for Linux, UNIX and Windows 9.5/9.7/10.1/10.5 Oracle Corporation: MySQL Community Edition 5.1/5.5/5.6 ${ }^{* 1}$ Firebird Foundation Incorporated: Firebird 2.1/2.5
Number of DB connections (number of databases that can be connected at the same time)		3 connections max. ${ }^{\text {2 }}$
Instruction	Supported operations	The following operations can be performed by executing DB connection instructions in the NJ -series CPU units. Inserting records (INSERT), updating records (UPDATE), retrieving records (SELECT) and deleting records (DELETE)
	Number of columns in an INSERT/ UPDATE/SELECT operations	SQL server: 1,024 columns max. Oracle/DB2/MySQL/Firebird: 1,000 columns max.
	Number of records in the output of a SELECT operation	65,535 elements max. 4 MB max.
	Number of DB Map Variables for which a mapping can be created	SQL server: 60 variables max. Oracle/DB2/MySQL: 30 variables max. Firebird: 15 variables max. Even if the number of DB Map Variables has not reached the upper limit, the total number of members of structures used as data type of DB Map Variables is 10,000 members max.
Run mode of the DB connection service		Operation mode or Test mode: - Operation mode: When each instruction is executed, the service actually accesses the DB. - Test mode: When each instruction is executed, the service ends the instruction normally without accessing the DB actually.
Spool function		Used to store the SQL statements when an error occurred and resend the statements when the communications are recovered from the error. Spool capacity: $1 \mathrm{MB}^{* 3}$
Operation log function		The following three types of logs can be recorded: - Execution log: Log for tracing the executions of the DB connection service. - Debug log: Detailed log for SQL statement executions of the DB connection service. - SQL execution failure log: Log for execution failures of SQL statements in the DB.
DB connect	service shutdown function	Used to shut down the DB connection service after automatically saving the operation log files into the SD memory card.

*1. The supported storage engines of the DB are InnoDB and MyISAM.
*2. When two or more DB connections are established, the operation cannot be guaranteed if you set different database types for the connections.
*3. Refer to "NJ-Series database connection CPU units user's manual (W527)" for more information.

Note: DB2, MySQL and Firebird connections are supported only by the CPU units version 1.08 or higher and the Sysmac Studio version 1.09 or higher.

Nomenclature

CPU unit (NJ501/301- $\square \square \square \square)$

100 to 240 VAC power supply unit (NJ-PA3001)

24 VDC power supply unit (NJ-PD3001)

Dimensions

NJ-Series system (NJ-P $\square 3001$ + NJ501/301- $\square \square \square \square$ + one I/O unit + CJ1W-TER01)

No. of units mounted with 31-mm width	Rack width (mm)
	With NJ501/301- \square
$\mathbf{2}$	205.7
$\mathbf{3}$	236.7
$\mathbf{4}$	267.7
$\mathbf{5}$	298.7
$\mathbf{6}$	329.7
$\mathbf{7}$	360.7
$\mathbf{8}$	391.7
$\mathbf{9}$	422.7
$\mathbf{1 0}$	453.7

Power supply unit (NJ-PA3001/PD3001)

CPU unit (NJ501/301- $\square \square \square \square$)

End cover (CJ1W-TER01)

CJ units

[^1]
Mounting dimensions

DIN track model number	A
PFP-100N2	16 mm
PFP-100N	7.3 mm
PFP-50N	7.3 mm

Mounting height

Expansion cable

Note: 1. Consider the following points when expanding the configuration:

- The total length of I/O connecting cable must not be exceed 12 m .
- I/O Connecting cables require the bending radius indicates below.

2. Outer diameter of expansion cable: 8.6 mm .

Power supply units current consumption

Checking current and power consumption

After selecting a power supply unit based on considerations such as the power supply voltage, calculate the current and power requirements for each rack.

Condition 1: Current requirements
There are two voltage groups for internal power consumption: 5 V and 24 V .
Current consumption at 5 V (internal logic power supply)
Current consumption at 24 V (relay driving power supply)
Condition 2: Power requirements
For each rack, the upper limits are determined for the current and power that can be provided to the mounted units. Design the system so that the total current consumption for all the mounted units does not exceed the maximum total power or the maximum current supplied for the voltage groups shown in the following tables.
The maximum current and total power supplied for CPU racks and expansion racks according to the power supply unit model are shown below.

Power supply Units	Max. current supplied			(C) Max. total power supplied
	(A) 5-VDC CPU Racks*	(A) 5-VDC expansion rack	(B) 24 VDC	
NJ-PA3001	6.0 A	6.0 A	1.0 A	30 W
NJ-PD3001	6.0 A	6.0 A	1.0 A	30 W

Conditions 1 and 2 are below must be satisfied.

Condition 1: Maximum current
(1) Total unit current consumption at $5 \mathrm{~V} \leq(\mathrm{A})$ value
(2) Total unit current consumption at $24 \mathrm{~V} \leq$ (B) value

Condition 2: Maximum power
(1) $\times 5 V+(2) \times 24 V \leq$ (C) value

* Including supply to the CPU unit.

Note: 1. For CPU racks, include the CPU unit current and power consumption in the calculations. When expanding, also include the current and power consumption of the I/O control unit in the calculations.
2. For expansion racks, include the I/O interface unit current and power consumption in the calculations.

Example: Calculating total current and power consumption

When the following units are mounted to a NJ-Series CPU rack using a NJ-PA3001 power supply unit.

Unit type	Model	Quantity	Voltage group	
			5 V	24 V
CPU unit	NJ501-1500	1	1.90 A	-
I/O control unit	CJ1W-IC101	1	0.02 A	-
Basic l/O units (input units)	CJ1W-ID211	2	0.08 A	-
	CJ1W-ID231	2	0.09 A	-
Basic I/O units (output units)	CJ1W-OC201	2	0.09 A	0.048 A
Special I/O unit	CJ1W-DA041	1	0.12 A	-
CPU bus unit	CJ1W-SCU22	1	0.29 A	-
Current consumption	Total		$\begin{gathered} 1.9 \mathrm{~A}+0.02 \mathrm{~A}+0.08 \mathrm{Ax} \\ 2+0.09 \mathrm{~A} \mathrm{x} 2+0.09 \mathrm{Ax} \\ 2+0.12 \mathrm{~A}+0.29 \\ \hline \end{gathered}$	$0.048 \mathrm{~A} \times 2$
	Result		$2.85 \mathrm{~A}(\leq 6.0 \mathrm{~A})$	$0.096 \mathrm{~A}(\leq 1.0 \mathrm{~A})$
Power consumption	Total		$2.85 \mathrm{~A} \times 5 \mathrm{~V}=14.25 \mathrm{~W}$	$0.096 \mathrm{~A} \times 24 \mathrm{~V}=2.3 \mathrm{~W}$
	Result		14.25 W +2.3 W = 16.5 W ($\leq 30 \mathrm{~W}$)	

[^2]
Ordering information

NJ series system

NJ series expansion racks

Power supply units

Symbol	Name	Output capacity			RUN output	Model
		5 VDC	24 VDC	Total		
(1)	100 to 240 VAC power supply unit for NJ -Series	6.0 A	1.0 A	30 W	Supported	NJ-PA3001
	24 VDC power supply unit for NJ -Series					NJ-PD3001

Note: Power supply units for the CJ Series cannot be used as a power supply for a CPU rack of the NJ System or as a power supply for an expansion rack.

NJ series machine controller CPU units

Standard CPU units

Symbol	Name	Program capacity	Variables capacity	I/O capacity	No. of units	Current consumption		Number of axes	Model
						5 VDC	24 VDC		
(2)	NJ501 CPU unit	20 MB	2 MB: Retained 4 MB: Not retained	2,560 points	CPU rack: 10 units max. Expansion rack: 40 units max. (Up to 3 expansion racks)	1.90 A	-	64	NJ501-1500
								32	NJ501-1400
								16	NJ501-1300
	NJ301 CPU unit	5 MB	0.5 MB: Retained 2 MB: Not retained					8	NJ301-1200
								4	NJ301-1100

CPU units with robotic functionality

Symbol	Name	Program capacity	Variables capacity	1/O capacity	No. of units	Current consumption		Number of axes	Model
						5 VDC	24 VDC		
(2)	NJ501 CPU Unit	20 MB	2 MB: Retained4 MB: Not retained	2,560 points	CPU rack: 10 units max. Expansion rack: 40 units max. (Up to 3 expansion racks)	1.90 A	-	64	NJ501-4500
								32	NJ501-4400
								16	NJ501-4300
									NJ501-4310 ${ }^{\text {¹ }}$

*1. The NJ501-4310 CPU unit only supports one Delta robot.
CPU units with database connection

Symbol	Name	Program capacity	Variables capacity	I/O capacity	No. of units	Current consumption		Number of axes	Model
						5 VDC	24 VDC		
(2)	NJ501 CPU Unit	20 MB	2 MB: Retained 4 MB: Not retained	2,560 points	CPU Rack: 10 units max. Expansion rack: 40 units max. (Up to 3 expansion racks)	1.90 A	-	64	NJ501-1520
								32	NJ501-1420
								16	NJ501-1320

Note: The end cover unit CJ1W-TER01 is included with the CPU unit.

CJ series digital I/O units

Symbol	Points	Type	Rated voltage	Rated current	Width	Remarks	$\begin{gathered} \text { Current } \\ \text { consumption } \\ \text { (A) } \end{gathered}$		Connection type	Model
							5 VDC	24 VDC		
(3)	8	AC input	240 VAC	10 mA	31 mm	-	0.08	-	M3	CJ1W-IA201
	16		120 VAC	7 mA	31 mm	-	0.09	-	M3	CJ1W-IA111
	8	DC input	24 VDC	10 mA	31 mm	-	0.08	-	M3	CJ1W-ID201
	16		24 VDC	7 mA	31 mm	-	0.08	-	M3	CJ1W-ID211
					31 mm				Screwless	CJ1W-ID211(SL)
	16		24 VDC	7 mA	31 mm	Fast-response ($15 \mu \mathrm{~s}$ is $\mathrm{ON}, 90 \mu \mathrm{~s}$ is OFF)	0.13	-	M3	CJ1W-ID212
	16		24 VDC	7 mA	31 mm	Inputs start interrupt tasks in PLC program	0.08	-	M3	CJ1W-INT01
	16		24 VDC	7 mA	31 mm	Latches pulses down to 50μ s pulse width	0.08	-	M3	CJ1W-IDP01
	32		24 VDC	4.1 mA	20 mm	-	0.09	-	Fujitsu	CJ1W-ID231
	32		24 VDC	4.1 mA	20 mm	-	0.09	-	MIL	CJ1W-ID232
	32		24 VDC	4.1 mA	20 mm	Fast-response ($15 \mu \mathrm{~s}$ is $\mathrm{ON}, 90 \mu \mathrm{~s}$ is OFF)	0.20	-	MIL	CJ1W-ID233
	64		24 VDC	4.1 mA	31 mm	-	0.09	-	Fujitsu	CJ1W-ID261
	64		24 VDC	4.1 mA	31 mm	-	0.09	-	MIL	CJ1W-ID262
	8	Triac output	250 VAC	0.6 mA	31 mm	- -	0.22	-	M3	CJ1W-OA201
	8	Relay contact output	250 VAC	2 A	31 mm	-	0.09	0.048	M3	CJ1W-OC201
					31 mm				Screwless	CJ1W-OC201(SL)
	16		250 VAC	2 A	31 mm	-	0.11	0.096	M3	CJ1W-OC211
					31 mm				Screwless	CJ1W-OC211(SL)
	8	DC output (sink)	12 to 24 VDC	2 A	31 mm	-	0.09	-	M3	CJ1W-OD201
	8		12 to 24 VDC	0.5 A	31 mm	-	0.10	-	M3	CJ1W-OD203
	16		12 to 24 VDC	0.5 A	31 mm	-	0.10	-	M3	CJ1W-OD211
					31 mm				Screwless	CJ1W-OD211(SL)
	16		24 VDC	0.5 A	31 mm	Fast-response ($15 \mu \mathrm{~s}$ is $\mathrm{ON}, 80 \mu \mathrm{~s}$ is OFF)	0.15	-	M3	CJ1W-OD213
	32		12 to 24 VDC	0.5 A	20 mm	-	0.14	-	Fujitsu	CJ1W-OD231
	32		12 to 24 VDC	0.5 A	20 mm	-	0.14	-	MIL	CJ1W-OD233
	32		24 VDC	0.5 A	20 mm	Fast-response ($15 \mu \mathrm{~s}$ is $\mathrm{ON}, 80 \mu \mathrm{~s}$ is OFF)	0.22	-	MIL	CJ1W-OD234
	64		12 to 24 VDC	0.3 A	31 mm	-	0.17	-	Fujitsu	CJ1W-OD261
	64		12 to 24 VDC	0.3 A	31 mm	-	0.17	-	MIL	CJ1W-OD263

Symbol	Points	Type	Rated voltage	Rated current	Width	Remarks	Currentconsumption(A)		Connection type	Model
							5 VDC	24 VDC		
(3)	8	DC output (source)	24 VDC	2 A	31 mm	Short-circuit protection	0.11	-	M3	CJ1W-OD202
	8		24 VDC	0.5 A	31 mm	Short-circuit protection	0.10	-	M3	CJ1W-OD204
	16		24 VDC	0.5 A	31 mm	Short-circuit protection	0.10	-	M3	CJ1W-OD212
					31 mm				Screwless	CJ1W-OD212(SL)
	32		24 VDC	0.3 A	20 mm	Short-circuit protection	0.15	-	MIL	CJ1W-OD232
	64		24 VDC	0.3 A	31 mm	-	0.17	-	MIL	CJ1W-OD262
	16+16	DC in + out (source)	24 VDC	0.5 A	31 mm	- -	0.13	-	MIL	CJ1W-MD232
	16+16	DC in + out (sink)	24 VDC	0.5 A	31 mm	- -	0.13	-	Fujitsu	CJ1W-MD231
	16+16		24 VDC	0.5 A	31 mm	- -	0.13	-	MIL	CJ1W-MD233
	$32+32$		24 VDC	0.3 A	31 mm	- -	0.14	-	Fujitsu	CJ1W-MD261
	$32+32$		24 VDC	0.3 A	31 mm	- -	0.14	-	MIL	CJ1W-MD263
	$32+32$	DC in + out (TTL)	5 VDC	35 mA	31 mm	- -	0.19	-	MIL	CJ1W-MD563

Note: MIL = Connector according to MIL-C-83503 (compatible with DIN 41651/IEC 60603-1).

CJ series analogue I/O and control units

-	Points	Type	Ranges	Resolution	Accuracy*	Conversion time	Width	Remarks	Current (A)		Connection type	Model
あ									5 V	24 V		
(3)	4	$\begin{aligned} & \hline \begin{array}{l} \text { Universal } \\ \text { analogue } \\ \text { input } \end{array} \end{aligned}$	0 to 5 V,1 to 5 V,0 t to 10 V,0 to 20 mA,4 to 20 mA,$\mathrm{~K}, \mathrm{~J}, \mathrm{~T}, \mathrm{~L}, \mathrm{R}$,S, B, Pt100,Pt1000, JPt100	V/: 1/12,000 T/C: $0.1^{\circ} \mathrm{C}$ RTD: $0.1^{\circ} \mathrm{C}$	V: 0.3% I: 0.3\% T/C: 0.3% RTD: 0.3%	$250 \mathrm{~ms} / 4$ points	31 mm	Universal inputs, with zero/span adjustment, configurable alarms, scaling, sensor error detection	0.32	-	M3	CJ1W-AD04U
											Screwless	CJ1W-AD04U(SL)
	4	Analogue input	$\begin{aligned} & 0 \text { to } 5 \mathrm{~V}, \\ & 0 \text { to } 10 \mathrm{~V}, \\ & -10 \text { to } 10 \mathrm{~V}, \\ & 1 \text { to } 5 \mathrm{~V}, \\ & 4 \text { to } 20 \mathrm{~mA} \end{aligned}$	1/8,000	$\begin{aligned} & \text { V: 0.2\% } \\ & \text { I: 0.4\% } \end{aligned}$	$250 \mu \mathrm{~s} /$ point	31 mm	Offset/gain adjustment, peak hold, moving average, alarms	0.42	-	$\begin{array}{\|l\|} \hline \text { M3 } \\ \hline \text { Screwless } \\ \hline \end{array}$	CJ1W-AD041-V1
												CJ1W-AD041-V1(SL)
	4	High-speed analogue input	1 to 5 V, 0 to 10 V, -5 to 5 V, -10 to 10 V, 4 to 20 mA	1/40,000	$\begin{aligned} & \text { V: 0.2\% } \\ & \text { I: 0.4\% } \end{aligned}$	$35 \mu \mathrm{~s} / 4$ points	31 mm	Direct conversion (CJ2H special instruction)	0.52	${ }^{-}$	M3	CJ1W-AD042
	8	$\begin{aligned} & \hline \begin{array}{l} \text { Analogue } \\ \text { input } \end{array} \\ & \hline \end{aligned}$	1 to 5 V,0 to 10 V,-10 to 10 V,1 to 5 V,4 to 20 mA	1/8,000	$\begin{aligned} & \text { V: 0.2\% } \\ & \text { I: 0.4\% } \end{aligned}$	$250 \mu \mathrm{~s} /$ point	31 mm	Offset/gain adjustment, peak hold, moving average, alarms	0.42		$\begin{array}{\|l\|} \hline \text { M3 } \\ \hline \text { Screwless } \\ \hline \end{array}$	CJ1W-AD081-V1
												CJ1W-AD081-V1(SL)
	2	Analogue output	$\begin{aligned} & 0 \text { to } 5 \mathrm{~V}, \\ & 0 \text { to } 10 \mathrm{~V}, \\ & -10 \text { to } 10 \mathrm{~V}, \\ & 1 \text { to } 5 \mathrm{~V}, \\ & 4 \text { to } 20 \mathrm{~mA} \end{aligned}$	1/4,000	$\begin{aligned} & \text { V: 0.3\% } \\ & \text { I: 0.5\% } \end{aligned}$	$1 \mathrm{~ms} /$ point	31 mm	Offset/gain adjustment, output hold	0.12	0.14	M3	CJ1W-DA021
											Screwless	CJ1W-DA021(SL)
	4	Analogue output	1 to 5 V,0 to 10 V,-10 to 10 V,1 to 5 V,4 to 20 mA	1/4,000	$\begin{aligned} & \text { V: 0.3\% } \\ & \text { 1: 0.5\% } \end{aligned}$	$1 \mathrm{~ms} /$ point	31 mm	Offset/gain adjustment, output hold	0.12	0.2	M3	CJ1W-DA041
											Screwless	CJ1W-DA041(SL)
	4	High-speed analogue output	1 to 5 V, 0 to 10 V, -10 to 10 V	1/40,000	0.3\%	$35 \mu \mathrm{~s} / 4$ points	31 mm	Direct conversion (CJ2H special instruction)	0.40	-	M3	CJ1W-DA042V
	8	Voltage output	$\begin{aligned} & 1 \text { to } 5 \mathrm{~V}, \\ & 0 \text { to } 10 \mathrm{~V}, \\ & -10 \text { to } 10 \mathrm{~V}, \\ & 1 \text { to } 5 \mathrm{~V} \end{aligned}$	1/8,000	0.3\%	$250 \mu \mathrm{~s} /$ point	31 mm	Offset/gain adjustment, output hold	0.14	0.14	M3	CJ1W-DA08V
											Screwless	CJ1W-DA08V(SL)
	8	Current output	4 to 20 mA	1/8,000	0.5\%	$250 \mu \mathrm{~s} /$ point	31 mm	Offset/gain adjustment, output hold	0.14	0.17	M3	CJ1W-DA08C
											Screwless	CJ1W-DA08C(SL)
	$4+2$	$\begin{array}{\|l} \hline \text { Analogue } \\ \text { in + out } \end{array}$	$\begin{aligned} & 1 \text { to } 5 \mathrm{~V}, \\ & 0 \text { to } 10 \mathrm{~V}, \\ & -10 \text { to } 10 \mathrm{~V} \text {, } \\ & 1 \text { to } 5 \mathrm{~V}, \\ & 4 \text { to } 20 \mathrm{~mA} \end{aligned}$	1/8,000	$\begin{aligned} & \text { in: } 0.2 \% \\ & \text { out: } 0.3 \% \end{aligned}$	$1 \mathrm{~ms} /$ point	31 mm	Offset/gain adjustment, scaling, peak hold, moving average, alarms, output hold	0.58	-	M3	CJ1W-MAD42
											Screwless	CJ1W-MAD42(SL)
	4	Universal analogue input	DC voltage, DC current, thermocouple, Pt100/Pt1000, potentiometer	1/256,000	0.05\%	$60 \mathrm{~ms} / 4$ points	31 mm	All inputs individually isolated, configurable alarms, maintenance functions, user-defined scaling, zero/span adjustment	0.30	-	M3	CJ1W-PH41U
	2	Process input	4 to 20 mA , 0 to 20 mA , 0 to 10 V , -10 to 10 V , 0 to 5 V , -5 to 5 V , 1 to 5 V , 0 to 1.25 V , 1.25 to 1.25 V	1/64,000	0.05\%	$5 \mathrm{~ms} /$ point	31 mm	Configurable alarms, maintenance functions, user-defined scaling, zero/span adjustment, square root, totaliser	0.18	0.09	M3	CJ1W-PDC15

을	Points	Type	Ranges	Resolution	Accuracy ${ }^{*}$	Conversion time	Width	Remarks	Current (A)		Connection type	Model
あ									5 V	24 V		
(3)	6	Temperature control loops, thermocouple	$\begin{aligned} & \text { K-type (-200 to } \\ & \left.1,300^{\circ} \mathrm{C}\right) \\ & \mathrm{J} \text {-type (}-100 \text { to } \\ & 850^{\circ} \mathrm{C} \text {) } \end{aligned}$	$0.1^{\circ} \mathrm{C}$	0.5\%	$40 \mathrm{~ms} / \mathrm{point}$	31 mm	Basic I/O unit, setup by DIP switches, adjustable filtering $10 / 50 / 60 \mathrm{~Hz}$	0.22	-	M3	CJ1W-TS561
											Screwless	CJ1W-TS561 (SL)
	6	Temperature control loops	$\begin{aligned} & \text { Pt100 (-200 to } \\ & \left.650^{\circ} \mathrm{C}\right) \\ & \text { Pt1000 (-200 } \\ & \text { to } \left.650^{\circ} \mathrm{C}\right) \end{aligned}$	$0.1^{\circ} \mathrm{C}$	0.5\%	$40 \mathrm{~ms} /$ point	31 mm	Basic I/O unit, setup by DIP switches, adjustable filtering $10 / 50 / 60 \mathrm{~Hz}$	0.25	-	M3	CJ1W-TS562
											Screwless	CJ1W-TS562 (SL)
	2	Temperature control loops, thermocouple	$\begin{aligned} & \mathrm{B}, \mathrm{~J}, \mathrm{~K}, \mathrm{~L}, \mathrm{R}, \\ & \mathrm{~S}, \mathrm{~T} \end{aligned}$	$0.1^{\circ} \mathrm{C}$	0.3\%	500 ms total	31 mm	Open collector NPN outputs	0.25	-	M3	CJ1W-TC003
	2	Temperature control loops, thermocouple	$\begin{aligned} & \mathrm{B}, \mathrm{~J}, \mathrm{~K}, \mathrm{~L}, \mathrm{R}, \\ & \mathrm{~S}, \mathrm{~T} \end{aligned}$	$0.1^{\circ} \mathrm{C}$	0.3\%	500 ms total	31 mm	Open collector PNP outputs	0.25	-	M3	CJ1W-TC004
	2	Temperature control loops	Pt100, JPt100	$0.1^{\circ} \mathrm{C}$	0.3\%	500 ms total	31 mm	Open collector NPN outputs	0.25	-	M3	CJ1W-TC103
	2	Temperature control loops	Pt100, JPt100	$0.1^{\circ} \mathrm{C}$	0.3\%	500 ms total	31 mm	Open collector PNP outputs	0.25	-	M3	CJ1W-TC104

* Accuracy for voltage and current inputs/outputs as percentage of full scale and typical value at $25^{\circ} \mathrm{C}$ ambient temperature (consult the operation manual for details) Accuracy for temperature inputs/outputs as percentage of process value and typical value at $25^{\circ} \mathrm{C}$ ambient temperature (consult the operation manual for details)

CJ series special I/O units

Symbol	Channels	Type	Signal type	Width	Remarks	Current consumption (A)		Connection type	Model
						5 V	24 V		
(3)	2	500 kHz Counter	24 V , line driver	31 mm	2 configurable digital inputs + outputs	0.28	-	Fujitsu	CJ1W-CT021
	4	100 kHz Counter	Line driver, 24 V via terminal block		Target values trigger interrupt to CPU	0.32	-	$1 \times \mathrm{MIL}(40 \mathrm{pt})$	CJ1W-CTL41-E

CJ series communication units

Symbol	Type	Ports	Data transfer	Protocols	Width	Current consumption (A)		Connection type	Model
						5 V	24 V		
(3)	Serial communications units	$2 \times$ RS-232C	High-speed	CompoWay/F, host link, NT link, Modbus, user-defined	31 mm	0.28	-	9 pin D-Sub	CJ1W-SCU22
		$2 \times$ RS-422A/RS-485			31 mm	0.28	-	9 pin D-Sub	CJ1W-SCU32
		$\begin{aligned} & 1 \times \mathrm{RS}-232 \mathrm{C}+ \\ & 1 \times \mathrm{RS}-422 / \mathrm{RS}-485 \end{aligned}$			31 mm	0.28	-	9 pin D-Sub	CJ1W-SCU42
	EtherNet/IP	1×100 Base-Tx	-	EtherNet/IP, UDP, TCP/IP, FTP server, SNTP, SNMP	31 mm	0.41	-	RJ45	CJ1W-EIP21*
	DeviceNet	$1 \times$ CAN	-	DeviceNet	31 mm	0.29	-	5-p detachable	CJ1W-DRM21
	CompoNet	4-wire, data + power to slaves (Master)	-	CompoNet (CIP-based)	31 mm	0.4	-	4-p detachable IDC or screw	CJ1W-CRM21 ${ }^{\text {² }}$
	PROFIBUS-DP	$1 \times$ RS-485 (Master)	-	DP, DPV1	31 mm	0.40	-	9 pin D-Sub	CJ1W-PRM21
		$1 \times \mathrm{RS}-485$ (Slave)	-	DP	31 mm	0.40	-		CJ1W-PRT21
	PROFINET-IO	1×100 Base-Tx	-	PROFINET-IO controller, FINS/UDP	31 mm	0.42	-	RJ45	CJ1W-PNT21
	RS-422A converter accessory	RS-232C to RS-422A/RS-485 signal converter. Mounts directly on serial port						9 pin D-Sub to screw clamp terminals	CJ1W-CIF11

*1. Supported only by the EtherNet/IP units with unit version 2.1 or later, CPU units with unit version 1.01 or later and the Sysmac Studio version 1.02 or higher.
*2. Supported only by the CPU units with unit version 1.01 or higher and the Sysmac Studio version 1.02 or higher.

CJ series ID sensor units

Symbol	Type	Specifications				Current consumption (A)		Model
		Connected ID systems	No. of connected R/W heads	External power supply	No. of unit numbers allocated	5 V	24 V	
(3)	ID sensor units	V680-Series RFID system	1	Not required	1	$0.26{ }^{11}$	$0.13{ }^{11}$	CJ1W-V680C11
			2		2	0.32	0.26	CJ1W-V680C12

[^3]Note: The data transfer function using intelligent I/O commands can not be used.

Expansion racks

CJ series I/O control unit (mounted on CPU rack when connecting expansion racks)

Symbol	Name	Connecting cable	Connected Unit	Width	Current consumption (A)		Model
					5 V	24 V	
(4)	CJ-Series I/O control unit	CS1W-CND $\square 3$	CJ1W-II101	20 mm	0.02 A	-	CJ1W-IC101

Note: Mount to the right of the power supply unit.
CJ series I/O interface unit (mounted on expansion rack)

Symbol	Name	Connecting cable	Width	Current consumption (A)		Model
				5 V	24 V	
(5)	CJ-Series I/O interface unit	CS1W-CNपП3	31 mm	0.13 A	-	CJ1W-II101

Note: Mount to the right of the power supply unit.
I/O connecting cables

Symbol	Name	Specifications		Model
(6)	I/O connecting cable	- Connects an I/O control unit on NJ-Series CPU rack to an I/O interface unit on a NJ -Series expansion rack. or - Connects an I/O interface unit on NJ-Series expansion rack to an I/O interface unit on another NJ -Series expansion rack.	Cable length: 0.3 m	CS1W-CN313
			Cable length: 0.7 m	CS1W-CN713
			Cable length: 2 m	CS1W-CN223
			Cable length: 3 m	CS1W-CN323
			Cable length: 5 m	CS1W-CN523
			Cable length: 10 m	CS1W-CN133
			Cable length: 12 m	CS1W-CN133-B2

EtherCAT junction slave

Symbol	Name	No. of ports	Power supply voltage	Current consumption (A)	Dimensions (W x D x H)	Weight	Model	Appearance
(7)	EtherCAT junction slave	3	$\begin{aligned} & 20.4 \text { to } 28.8 \text { VDC } \\ & (24 \text { VDC }-15 \text { to } \\ & 20 \%) \end{aligned}$	0.08	$25 \mathrm{~mm} \times 78 \mathrm{~mm} \times 90 \mathrm{~mm}$	165 g	GX-JC03	
		6		0.17	$48 \mathrm{~mm} \times 78 \mathrm{~mm} \times 90 \mathrm{~mm}$	220 g	GX-JC06	

Note: 1. Please do not connect EtherCAT junction slave with OMRON position control unit, Model CJ1W-NC $\square 81 / \square 82$ 2. EtherCAT junction slave cannot be used for Ethernet/IP and Ethernet.

Industrial switching hubs

Symbol	Specifications			Accessories	Current consumptio n (A)	Model	Appearance
	Functions	No. of ports	Failure detection				
(8)	Quality of Service (QoS): EtherNet/IP control data priority. Failure detection: Broadcast storm and LSI error detection 10/100 BASE-TX, Auto-Negotiation	3	No	Power supply connector	0.22	W4S1-03B	
		5	No		0.22	W4S1-05B	
		5	Yes	Power supply connector and connector for informing error	0.22	W4S1-05C	

Recommended EtherCAT and EtherNet/IP communication cables

Symbol	Item			Manufacturer	Cable colour	Cable length (m)	Model
(9)	Ethernet patch cable	Cat 6a, AWG27, 4-pair cable Cable sheath material: $\mathrm{LSZH}^{* 1}$ Note: This cable is available in yellow, green and blue colours.	Standard type Cable with connectors on both ends (RJ45/RJ45)	OMRON	Yellow	0.2	XS6W-6LSZH8SS20CM-Y
						0.3	XS6W-6LSZH8SS30CM-Y
						0.5	XS6W-6LSZH8SS50CM-Y
						1	XS6W-6LSZH8SS100CM-Y
						1.5	XS6W-6LSZH8SS150CM-Y
						2	XS6W-6LSZH8SS200CM-Y
						3	XS6W-6LSZH8SS300CM-Y
						5	XS6W-6LSZH8SS500CM-Y
						7.5	XS6W-6LSZH8SS750CM-Y
						10	XS6W-6LSZH8SS1000CM-Y
						15	XS6W-6LSZH8SS1500CM-Y
						20	XS6W-6LSZH8SS2000CM-Y
					Green	0.2	XS6W-6LSZH8SS20CM-G
						0.3	XS6W-6LSZH8SS30CM-G
						0.5	XS6W-6LSZH8SS50CM-G
						1	XS6W-6LSZH8SS100CM-G
						1.5	XS6W-6LSZH8SS150CM-G
						2	XS6W-6LSZH8SS200CM-G
						3	XS6W-6LSZH8SS300CM-G
						5	XS6W-6LSZH8SS500CM-G
						7.5	XS6W-6LSZH8SS750CM-G
						10	XS6W-6LSZH8SS1000CM-G
						15	XS6W-6LSZH8SS1500CM-G
						20	XS6W-6LSZH8SS2000CM-G
		Cat 5, AWG26, 4-pair cable Cable sheath material: PUR*1	Standard type Cable with connectors on both ends (RJ45/RJ45)		Green	0.5	XS6W-5PUR8SS50CM-G
						1	XS6W-5PUR8SS100CM-G
						1.5	XS6W-5PUR8SS150CM-G
						2	XS6W-5PUR8SS200CM-G
						3	XS6W-5PUR8SS300CM-G
						5	XS6W-5PUR8SS500CM-G
						7.5	XS6W-5PUR8SS750CM-G
						10	XS6W-5PUR8SS1000CM-G
						15	XS6W-5PUR8SS1500CM-G
						20	XS6W-5PUR8SS2000CM-G
		Cat5, AWG22, 2-pair cable	Rugged type Cable with connectors on both ends (RJ45/RJ45)		Grey	0.3	XS5W-T421-AMD-K
						0.5	XS5W-T421-BMD-K
						1	XS5W-T421-CMD-K
						2	XS5W-T421-DMD-K
						3	XS5W-T421-EMD-K
						5	XS5W-T421-GMD-K
						10	XS5W-T421-JMD-K
						15	XS5W-T421-KMD-K
			Rugged type Cable with connectors on both ends (M12 straight/RJ45)		Grey	0.3	XS5W-T421-AMC-K
						0.5	XS5W-T421-BMC-K
						1	XS5W-T421-CMC-K
						2	XS5W-T421-DMC-K
						3	XS5W-T421-EMC-K
						5	XS5W-T421-GMC-K
						10	XS5W-T421-JMC-K
						15	XS5W-T421-KMC-K
			Rugged type Cable with connectors on both ends (M12 L right angle/RJ45)		Grey	0.3	XS5W-T422-AMC-K
						0.5	XS5W-T422-BMC-K
						1	XS5W-T422-CMC-K
						2	XS5W-T422-DMC-K
						3	XS5W-T422-EMC-K
						5	XS5W-T422-GMC-K
						10	XS5W-T422-JMC-K
						15	XS5W-T422-KMC-K
	Ethernet installation cable	Cat 5, SF/UTP, $4 \times 2 \times$ AWG 24/1 (solid core), Polyurethane (PUR)		Weidmüller	Green	100	WM IE-5IC4x2xAWG24/1-PUR
		Cat 5, SF/UTP, $4 \times 2 \times$ AWG 26/7 (stranded core), Polyurethane (PUR)			Green	100	WM IE-5IC4x2xAWG26/7-PUR
	Connectors	RJ45 metallic connector For AWG22 to AWG26			-	-	WM IE-TO-RJ45-FH-BK
		RJ45 plastic connector For AWG22 to AWG24	1)	OMRON	-	-	XS6G-T421-1
	RJ45 socket	DIN-rail mount socket to terminate installation cable in the cabinet		Weidmüller	-	-	WM IE-T0-RJ45-FJ-B

*1. The lineup features low smoke zero halogen cables for in-cabinet use and PUR cables for out-of-cabinet use.
Note: Please be careful while cable processing, for EtherCAT, connectors on both ends should be shield connected and for EtherNet/IP, connectors on only one end should be shield connected.

WE70 FA wireless LAN units

Name	Area	Type	Model	Appearance
WE70 FA wireless LAN units	Europe	Access point (Master)	WE70-AP-EU	
		Client (Slave)	WE70-CL-EU	
Directional magnetic-base antenna	1 set with two antennas, $2.4 \mathrm{GHz} / 5 \mathrm{GHz}$ Dual-band compatible	WE70-AT001H		
DIN rail mounting bracket	For TH35 7.5	WT30-FT001		
	For TH35 15	WT30-FT002		
Antenna extension cable	5 m	WE70-CA5M		

Note: Special versions are available for USA, Canada, China and Japan.

NJ series options and accessories

Specifications		Model	Appearance
SD memory card	2 GB	HMC-SD291	
	4 GB	HMC-SD491	
DIN track	Length: 0.5 m ; height: 7.3 mm	PFP-50N	
	Length: 1 m ; height: 7.3 mm	PFP-100N	
	Length: 1 m ; height: 16 mm	PFP-100N2	
End plate to secure the units on the DIN track (2 pieces are included with the CPU unit and I/O interface unit)		PFP-M (2 pcs)	
Battery for NJ -Series CPU unit (The battery is included with the CPU unit)		CJ1W-BAT01	0
End cover (The end	and I/O interface unit)	CJ1W-TER01	

Computer software

Symbol	Specifications	Model
10$)$	Sysmac Studio	SYSMAC-SE2 $\square \square \square$

NA5 \square

NA series

The next generation of machine interface
An HMI that is dynamic, intuitive and predictive makes industrial machines more attractive and competitive. Our Sysmac HMI enables faster, more efficient control and monitoring - and a more natural, proactive relationship between operator and machine.

- Widescreen in all models: $7,9,12$ and 15 inches
- Up to 1280×800 high resolution display
- Multimedia including video and PDF
- NJ controller variables (Tags) in the NA project
- Multiple-access level security with password protection
- Visual Basic programming with VB.net

System configuration

General specifications

Item	Specifications			
	NA5-15W \square	NA5-12W \square	NA5-9W \square	NA5-7W \square
Rated power supply	24 VDC			
Allowable power supply voltage range	19.2 to 28.8 VDC ($24 \mathrm{VDC} \pm 20 \%$)			
Power consumption	47 W max.	45 W max.	40 W max.	35 W max.
Ambient operating temperature	0 to $50^{\circ} \mathrm{C}^{1{ }^{12}}$			
Ambient storage temperature	-20 to $60{ }^{\circ} \mathrm{C}^{\text {³ }}$			
Ambient operating humidity	10 to $90 \%{ }^{2}$ (with non condensation)			
Atmosphere	Must be free from corrosive gases			
Pollution degree	2 or less: JIS B 3502, IEC 61131-2			
Noise immunity	2 kV on power supply line (Conforms to IEC 61000-4-4)			
Vibration resistance (during operation)	Conforms to IEC 60068-2-6 5 to 8.4 Hz with 3.5 mm half amplitude and 8.4 to 150 Hz with $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for 100 minutes each in X, Y and Z directions (time coefficient of 10 minutes x coefficient factor of $10=$ total time of 100 min)			
Shock resistance (during operation)	Conforms to IEC 60028-2-27 $147 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in X, Y and Z directions			
Dimensions (W x H x D)	$420 \times 291 \times 69 \mathrm{~mm}$	$340 \times 244 \times 69 \mathrm{~mm}$	$290 \times 190 \times 69 \mathrm{~mm}$	$236 \times 165 \times 69 \mathrm{~mm}$
Panel cutout dimensions	$\begin{aligned} & 392_{0}^{+1} \times 268_{0}^{+1} \mathrm{~mm} \\ & \text { (horizontal } \times \text { vertical) } \\ & \text { Panel thickness: } 1.6 \text { to } \\ & 6.0 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 310_{0}^{+1} \times 221_{0}^{+1} \mathrm{~mm} \\ & \text { (horizontal } \times \text { vertical) } \\ & \text { Panel thickness: } 1.6 \text { to } \\ & 6.0 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 2611^{+1} \times 1660^{+1} \mathrm{~mm} \\ & \text { (horizontal } \times \text { vertical) } \\ & \text { Panel thickness: } 1.6 \text { to } \\ & 6.0 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 197_{7^{0.5}}^{0.5} \times 141_{10.5}^{+0.5} \mathrm{~mm} \\ & \text { (horizontal } \times \text { vertical) } \\ & \text { Panel thickness: } 1.6 \text { to } \\ & 6.0 \mathrm{~mm} \end{aligned}$
Weight	3.2 kg max .	2.3 kg max.	1.7 kg max .	1.3 kg max .
Degree of protection	Front-panel controls: IP65 oil-proof type, UL type 4X			
Battery life	5 years at $25^{\circ} \mathrm{C}$ The RTC will be backed up for 5 days after the battery runs low. The RTC will be backed up by a super capacitor for 5 minutes after removing the old battery			
International standards	UL 508/CSA standard C22.2 No. 142EMC Directive (2004/108/EC) EN 61131-2:2007Shipbuilding standards LR, DNV and NKIP65 oil-proof, UL type 4X (front panel only)ANSI 12.12.01 Class 1 Division 2/CSA standard C22.2RoHS Directive (2002/95/EC)KC standards KN 61000-6-2:2012-06 for EMS and KN 61000-6-4:2012-06 for EMIRCM			

*1. The ambient operating temperature is subject to the following restrictions, depending on the mounting angle:
The ambient operating temperature is 0 to $40^{\circ} \mathrm{C}$ when the mounting angle is 0° or more and less than 45° to the horizontal
The ambient operating temperature is 0 to $50^{\circ} \mathrm{C}$ when the mounting angle is 45° or more and 90° or less to the horizontal.
The ambient operating temperature is 0 to $50^{\circ} \mathrm{C}$ when the mounting angle is 90° or more and 135° or less to the horizontal

*2. Use the programmable terminal within the following temperature and humidity ranges:

*3. Store the programmable terminal within the following temperature and humidity ranges:

*4. Use power supply Class 2 to conform to UL standard.

Performance specifications

Item			Specifications			
			NA5-15W \square	NA5-12W \square	NA5-9W \square	NA5-7W \square
Display	Display panel ${ }^{11}$	Display device	TFT LCD			
		Screen size	15.4 inches	12.1 inches	9.0 inches	7.0 inches
		Resolution	$1,280 \times 800$ pixels (horizontal \times vertical)		800×480 pixels (horizontal \times vertical)	
		Colours	16,770,000 colours (24 bit full colour)			
		Effective display area	$\begin{aligned} & \hline 331 \times 207 \mathrm{~mm} \\ & \text { (horizontal x vertical) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 261 \times 163 \mathrm{~mm} \\ \text { (horizontal x vertical) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 197 \times 118 \mathrm{~mm} \\ \text { (horizontal x vertical) } \\ \hline \end{array}$	$\begin{aligned} & 152 \times 91 \mathrm{~mm} \\ & \text { (horizontal x vertical) } \end{aligned}$
		View angles	Left: 60°, Right: 60°, Top: 60°, Bottom: 60°			
	Backlight ${ }^{2}$	Life	50,000 hours min. ${ }^{\text {3 }}$			
		Brightness adjustment	200 levels			
	Front panel indicators* ${ }^{*}$	RUN	Lit green: Normal operation Lit red: Error			
Operation	Touch panel	Method	Analog resistance membrane (pressure sensitive)			
		Resolution	16,384 x 16,384			
		Life	1,000,000 operations			
	Function keys ${ }^{\text {5 }}$		3 inputs (capacitance inputs)			
Data capacity	User data capacity		256 MB			
External interfaces	Ethernet ports	Applications	Port 1: Connecting to factory network. NJ machine controller and VNC clients Port 2: Sysmac Studio connection for programming			
		Number of ports	2 ports			
		Compliant standards	IEEE 802.3i (10BASE-T), IEEE 802.3 u (100BASE-TX) and IEEE 802.3ab (1000BASE-T)			
		Transmission media	Shielded twisted-pair (STP) cable: Category 5, 5e or higher			
		Transmission distance	100 m			
		Connector	RJ45 8P8C modular connector			
	USB host ports	Applications	USB memory device, keyboard or mouse			
		Number of ports	2 ports			
		Compliant standards	USB 2.0			
		Transmission distance	5 m max.			
		Connector	Type-A connector			
	USB slave port	Applications	Sysmac Studio connection for programming			
		Number of ports	1 port			
		Compliant standards	USB 2.0			
		Transmission distance	5 m max.			
		Connector	Type-B connector			
	Serial port ${ }^{\text {6 }}$	Applications	Device connection			
		Number of ports	1 port			
		Compliant standards	RS-232C			
		Transmission distance	15 m max.			
		Connector	D-DUB 9-pin female connector			
	SD memory card slot	Applications	To transfer or store the project or to store log data			
		Number of lots	1 slot			
		Compliant standards	SD/SDHC			
	Expansion unit connector* ${ }^{*} 6$	Applications	Expansion unit			
		Quantity	1			

*1. There may be some defective pixels in the display. This is not a fault as long as the numbers of defective light and dark pixels fall within the following standard ranges:

Model	Standard range
NA5-15W \square	Number of light and dark pixels: 10 or less.
NA5-12W \square	(There must not be 3 consecutive light/dark pixels)
NA5-9W \square	
NA5-7W \square	

*2. The backlight can be replaced at an OMRON maintenance base.
*3. This is the estimated time before brightness is reduced by half at room temperature and humidity. The life expectancy is drastically shortened if programmable terminal is used at high temperatures.
*4. The brightness of the front panel indicators is also adjustable when you adjust the brightness of the backlight.
*5. Each function key has blue indicator. The brightness of the function key indicators is also adjustable when you adjust the brightness of the backlight.
*6. The Serial port and Expansion unit connector are for future expansion.

Front panel

(3) Function keys

Back panel

5) Expansion unit
connector (for future expansion)
(14) Battery connector

Bottom panel

(12) Reset switch
(15) DIP switch
(for future expansion)

(Appearance with the
Battery cover open)

No.	Name	Description
1	Display	The entire display is a touch panel that also functions as an input device.
2	RUN indicator	The status of the indicator changes according to the status of the NA HMI.
3	Function keys	There are three function keys: F1, F2 and F3. You can use the function keys as execution conditions for the actions for global or page events. You can also use the function keys for interlocks.
4	Battery cover	Open this cover to replace the battery.
5	Expansion unit connector	For future expansion.
6	ID information label	You can check the ID information of the NA HMI.
7	SD memory card connector	Insert an SD memory card here.
8	Ethernet port 1	Connect a device other than the Sysmac Studio.
	Ethernet port 2	Connect mainly the Sysmac Studio.
9	Serial port	For use with VB.NET.
10	USB host port	Connect this port to a USB memory device, mouse, etc...
11	USB slave port	Connect the Sysmac Studio or other devices.
12	Reset switch	Use this switch to reset the NA HMI.
13	Power supply connector	Connect the accessory power supply connector and supply power.
14	Battery connector	Connect the connector on the backup battery here.
15	DIP switch	For future expansion. (The DIP switch is on a PCB that is accessed by opening the battery cover). Do not change any of the factory settings of the pins on the DIP switch. (Default setting: OFF)
16	Battery	This is the battery to backup the clock information in the NA HMI.

Dimensions

NA5-15W \square

Cable connection dimensions

NA5-12W \square

Cable connection dimensions

NA5-9W \square

Cable connection dimensions

NA5-7W \square

Cable connection dimensions

Ordering information

Machine interface

Type	Display	Colours	Resolution	Frame colours	Model
Machine interface	15.4-inch widescreen TFT LCD	24 bit full colour	1280×800 pixels	Silver	NA5-15W101S
				Black	NA5-15W101B
	12.1-inch widescreen TFT LCD		1280×800 pixels	Silver	NA5-12W101S
				Black	NA5-12W101B
	9-inch widescreen TFT LCD		800×480 pixels	Silver	NA5-9W001S
				Black	NA5-9W001B
	7-inch widescreen TFT LCD		$800 \times 480 \text { pixels }$	Silver	NA5-7W001S
				Black	NA5-7W001B

Accessories

Type	Specifications		
SD memory card	2 GB	Model	
	4 GB	HMC-SD291	
USB memory	2 GB		
	8 GB	HMC-SD491	
Replacement battery	Battery life: 5 years (at 25으). This battery is provided as an accessory.	FZ-MEM2G	
Anti-reflection sheets	Attach a sheet to the screen to protect against diffused reflections and dirt. The entire sheet is colorless and transparent. Five sheets are provided in one set.	FZ-MEM4G	

Computer software

Specifications	Model
Sysmac Studio version 1.10 or higher	SYSMAC-SE2 $\square \square \square$

NX- \square

NX series I/O

Speed and accuracy for machine performance NX-Series I/O covers a full range of units, including standard and high-speed digital I/O's, various performance levels in analog I/O, encoder inputs and pulse outputs.

- Standard, high-speed and Time Stamp models
- Configuration by Sysmac Studio, via EtherCAT or by direct USB connection
- Detachable front connector with screwless push-in terminals for direct field wiring.
- Digital I/O models with 20/40 pin "flatcable" connectors for fast connection to custom wiring looms.

- High signal density: Up to 16 digital or 8 analog signals in 12 mm width

System configuration

General specifications

Item		Specifications
Enclosure		Mounted in a panel
Operating environment	Ambient operating temperature	0 to $55^{\circ} \mathrm{C}$
	Ambient operating humidity	10\% to 95\% (with no condensation or icing)
	Atmosphere	Must be free from corrosive gases
	Ambient storage temperature	-25 to $70^{\circ} \mathrm{C}$ (with no condensation or icing)
	Altitude	2,000 m max.
	Pollution degree	2 or less: conforms to JIS B3502 and IEC 61131-2
	Noise immunity	2kV on power supply line: conforms to IEC 61000-4-4.
	Overvoltage category	Category II: Conforms to JIS B3502 and IEC 61131-2
	EMC immunity level	Zone B
	Vibration resistance	Conforms to IEC 60068-2-6. 5 to 8.4 Hz with $3.5-\mathrm{mm}$ amplitude, 8.4 to 150 Hz , acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}, 100 \mathrm{~min}$ each in X, Y and Z directions (10 sweeps of 10 min each $=100 \mathrm{~min}$ total)
	Shock resistance	Conforms to IEC 60068-2-27. $147 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in X, Y and Z directions
Applicable standards		cULus: listed UL508 and ANSI/ISA 12.12.01 EC: EN 61131-2 and C-Tick3, KC: KC registration

Nomenclature

EtherCAT coupler unit

Symbol	Name	Function
A	NX bus connector	This connector is used to connect each unit.
B	Indicators	The indicators show the current operating status of the unit.
C	Communication ports	These ports are connected to the communication cables of the EtherCAT networks. There are two connectors, allowing daisy-chaining of communication units.
D	Peripheral USB port	This port is used to connect to the Sysmac Studio software.
E	Terminal block	The terminal block is used to connect external devices. The number of terminals depends on the type of unit.
F	Rotary switches	These rotary switches are used to set the node ad- dress. The address is set in decimal.
G	DIP switch	The DIP switch is used to set the 100s digit of the node address of the EtherCAT coupler unit.

Terminal block types

24 mm width 12-terminal type $\times 2$

EtherCAT communication specifications

Item	Specifications
Communication standard	IEC 61158 Type 12
Physical layer	100BASE-TX (IEEE 802.3)
Modulation	Baseband
Baud rate	100 Mbps
Topology	Depends on the specifications of the EtherCAT master
Transmission media	Category 5 or higher twisted-pair cable (recommended cable: double-shielded cable with foil and braiding, SF/UTP or S/FTP)
Transmission distance	Distance between nodes: 100 m or less

EtherCAT coupler unit

Item		Specifications
Model		NX-ECC202
Number of connect	NX units	63 units max. ${ }^{\text {1 }}$
Send/receive PDO	sizes	Input: 1024 bytes max. (including input data, status and unused areas) Output: 1024 bytes max. (including output data and unused areas)
Mailbox data size		Input/Output: 256 bytes
Mailbox		Emergency messages, SDO requests and SDO information
Refreshing method		Free-run refreshing I/O-synchronized refreshing Time Stamp refreshing
Node address setti	ange	1 to $192{ }^{2}$
I/O jitter performan		Inputs/Outputs: $1 \mu \mathrm{~s}$ max.
Communications c		250 to 100,000 $\mu \mathrm{s}^{* 3}{ }^{\text {²4 }}$
Unit power supply	Voltage	24 VDC (20.4 to 28.8 VDC)
	Capacity	10 W max.
	Efficiency	70\%
	Isolation method	No isolation between NX unit power supply and unit power supply terminals
	Unwired terminal current capacity	4 A max.
1/O power supply	Voltage	5 to $24 \mathrm{VDC} \mathrm{(4.5} \mathrm{to} 28.8 \mathrm{VDC})^{* 5}$
	Maximum I/O current	10 A max.
	Terminal current capacity	10 A max.
Unit power consum		1.45 W max.
Current consumpti	rom I/O power supply	$10 \mathrm{~mA} \mathrm{max}$. (for 24 VDC)
Dielectric strength		510 VAC for 1 min , leakage current: $5 \mathrm{~mA} \mathrm{max}$. (between isolated circuits)
Insulation resistance		$100 \mathrm{VDC}, 20 \mathrm{M} \Omega \mathrm{min}$. (between isolated circuits)
External connectio	minals	Connector for EtherCAT communications: - RJ45 $\times 2$ (shielded) - IN: EtherCAT input data - OUT: EtherCAT output data
		Screwless push-in terminal (8 terminals) For power supply unit, I/O power supply and grounding. Removable.
		Peripheral USB port for Sysmac Studio connection: - Physical layer: USB 2.0-compliant, B-type connector - Transmission distance: 5 m max.
Terminal block type		Screwless push-in terminal 8 terminals ($\mathrm{A}+\mathrm{B}$ with FG)
Dimensions (W x H		$46 \times 100 \times 71$
Weight		150 g max .

*1. Refer to the NX-safety control units user's manual (Cat.No. Z930) for the number of safety control units that can be connected.
*2. This specification applies to a connection to the built-in EtherCAT port on an NJ-series CPU unit.
*3. This depends on the specifications of the EtherCAT master. The values are as follows when you are connected to the built-in EtherCAT port on an NJ5-series CPU unit: $500 \mu \mathrm{~s}, 1,000 \mu \mathrm{~s}, 2,000 \mu \mathrm{~s}$ and $4,000 \mu \mathrm{~s}$. Refer to the NJ-series CPU unit built-in EtherCAT port user's manual (Cat.No. W505) for the most recent specifications.
*4. This depends on the unit configuration.
*5. Use an output voltage that is appropriate for the I/O circuits of the NX units and the connected external devices.

Digital I/O unit

Digital input unit (24 VDC)

Item	Specifications							
Model	NX-ID3317	NX-ID4342	NX-ID5342	NX-ID3343	NX-ID3417	NX-ID4442	NX-ID5442	NX-ID3443
Name	DC input unit							
Internal I/O common	NPN				PNP			
Capacity	4 points	8 points	16 points	4 points	4 points	8 points	16 points	4 points
Rated input voltage	$\begin{array}{\|l\|} \hline 12 \text { to } 24 \mathrm{VDC} \\ \text { (9 to } 28.8 \mathrm{VDC}) \\ \hline \end{array}$	$\begin{aligned} & 24 \mathrm{VDC} \\ & (15 \text { to } 28.8 \mathrm{VDC}) \end{aligned}$			$\begin{array}{\|l\|} \hline 12 \text { to } 24 \mathrm{VDC} \\ \text { (9 to } 28.8 \mathrm{VDC}) \\ \hline \end{array}$	$\begin{aligned} & 24 \mathrm{VDC} \\ & (15 \text { to } 28.8 \mathrm{VDC}) \\ & \hline \end{aligned}$		
Input current*1	6 mA	3.5 mA	2.5 mA	3.5 mA	6 mA	3.5 mA	2.5 mA	3.5 mA
ON voltage	9 VDC min.	15 VDC min.			9 VDC min.	$15 \mathrm{VDC} \mathrm{min}$.		
ON current	3 mA min.	$3 \mathrm{~mA} \mathrm{min}$.	2 mA min.	3 mA min.	3 mA min.	$3 \mathrm{~mA} \mathrm{min}$.	2 mA min.	3 mA min.
OFF voltage	2 VDC max.	5 VDC max.			2 VDC max.	5 VDC max.		
OFF current	1 mA max.		0.5 mA max.	1 mA max .	1 mA max.		0.5 mA max.	1 mA max .
ON/OFF response time	20μ s max. $/ 400 \mu \mathrm{~s}$ max.			100 ns max.	20μ s max. $/ 400 \mu \mathrm{~s}$ max.			100 ns max.
Input filter time	Default setting: $1 \mathrm{~ms}^{\text {² }}$			$\begin{aligned} & \text { Default setting: } \\ & 8 \mu \mathrm{~s}^{33} \end{aligned}$	Default setting: $1 \mathrm{~ms}^{2}{ }^{\text {2 }}$			$\begin{aligned} & \text { Default setting: } \\ & 8 \mu \mathrm{~s}^{3} \end{aligned}$
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.							
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)							
Isolation method	Photocoupler isolation			Digital isolator	Photocoupler isolation			Digital isolator
Unit power consumption	0.50 W max.	0.50 W max.	0.55 W max.	0.55 W max.	0.50 W max.	0.50 W max.	0.55 W max.	0.55 W max.
I/O power supply method	Supply from the NX bus							
I/O current consumption	No consumption			30 mA max.	No consumption			30 mA max.
Current capacity of I/O power supply terminal	0.1 A/terminal max.		Without I/O power supply terminals	0.1 A/terminal max.	0.1 A/terminal max.		Without I/O power supply terminals	0.1 A/terminal max.
I/O refreshing method	Switching synchronous I/O refreshing and free-run refreshing							
Terminal block type	Screwless push-in terminal 12 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 12 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 12 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 16 terminals $(A+B)$	Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 12 terminals $(A+B)$
Dimensions (W x H x D)	$12 \times 100 \times 71$							
Weight	65 g max.							
Disconnection/ short-circuit detection	Not supported							
Protective function	Not supported							

*1. Typical rated current at 24 VDC
*2. Input filter time: No filter, $0.25,0.5,1,2,4,8,16,32,64,128,256 \mathrm{~ms}$.
*3. Input filter time: No filter, 1, 2, 4, 8, 16, 32, 64, 128, $256 \mu \mathrm{~s}$.

Terminal wiring

NX-ID3317

NX-ID3343

NX-ID4342

NX-ID3443

Terminal wiring

NX-ID5342

NX-ID3417

NX-ID3443

NX-ID4442

NX-ID5442

Digital input unit (with time stamp function) (24 VDC)

Item	Specifications	
Model	NX-ID3344	NX-ID3444
Name	DC input unit	
Internal I/O common	NPN	PNP
Capacity	4 points	4 points
Rated input voltage	24 VDC (15 to 28.8 VDC)	
Input current ${ }^{11}$	3.5 mA	
ON voltage	15 VDC min.	
ON current	3 mA min .	
OFF voltage	5 VDC max.	
OFF current	1 mA max.	
ON/OFF response time	100 ns max.	
Input filter time	No filter	
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.	
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)	
Isolation method	Digital isolator	
Unit power consumption	0.55 W max.	
I/O power supply method	Supply from the NX bus	
I/O current consumption	30 mA max.	
Current capacity of I/O power supply terminal	0.1 A/terminal max.	
l/O refreshing method	Time Stamp	
Terminal block type	Screwless push-in terminal 12 terminals ($\mathrm{A}+\mathrm{B}$)	
Dimensions (W x H x D)	$12 \times 100 \times 71$	
Weight	65 g max .	
Disconnection/ short-circuit detection	Not supported	
Protective function	Not supported	

*1. Typical rated current at 24 VDC.

Digital input unit (with MIL connector) (24 VDC)

*1. Typical rated current at 24 VDC.

Terminal wiring

NX-ID5142-5

$24 \text { VDC }$	$\begin{gathered} \hline \text { Signal } \\ \text { name } \\ \text { NC } \\ \text { COM } \end{gathered}$	$\begin{aligned} & \text { Connector } \\ & \text { pin } \end{aligned}$		Signa name NC COM
		1	2	
		3	4	
	IN15	5	6	IN07
	IN14	7	8	IN06
	IN13	9	10	IN05
	IN12	11	12	IN04
	IN11	13	14	IN03
	IN10	15	16	IN02
	IN09	17	18	IN01
	IN08	19	20	INOO

- The polarity of the input power supply can be connected in either direction. - Be sure to wire both pins 3 and 4 (COM), and set the same polarity for both pins.

NX-ID6142-5

- The polarity of the input power supply can be connected in either direction.
- Be sure to wire both pins 23 and 24 (COM0), and set the same polarity for both pins - Be sure to wire both pins 3 and 4 (COM1), and set the same polarity for both pins.

Digital input unit (230 VAC)

Item	Specifications
Model	NX-IA3117
Name	AC input unit
Internal I/O common	No polarity
Capacity	4 points, independent contacts
Rated input voltage	200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ (170 to 264 VAC, $\pm 3 \mathrm{~Hz}$)
Input current	$\begin{aligned} & 9 \mathrm{~mA} \text { (at } 200 \mathrm{VAC}, 50 \mathrm{~Hz} \text {) } \\ & 11 \mathrm{~mA}(\text { at } 200 \mathrm{VAC}, 60 \mathrm{~Hz}) \end{aligned}$
ON voltage	120 VAC min.
ON current	4 mA min.
OFF voltage	40 VAC max.
OFF current	2 mA max.
ON/OFF response time	10 ms max./40 ms max.
Input filter time	Default setting: $1 \mathrm{~ms}^{\text {¹ }}$
Dielectric strength	Between each AC input circuit: AC3700V VAC for 1 min at a leakage current of 5 mA max. Between the external terminals and functional ground terminal: 2300 VAC for 1 min at a leakage current of 5 mA max. Between the external terminals and internal circuits: 2300 VAC for 1 min at a leakage current of 5 mA max. Between the internal circuit and the functional ground terminal: 510 VAC for 1 min at a leakage current of 5 mA max.
Insulation resistance	Between each AC input circuit: $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) Between the external terminals and functional ground terminal: $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) Between the external terminals and internal circuits: $20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) Between the internal circuit and the functional ground terminal: $20 \mathrm{M} \Omega \mathrm{min}$. (at 100 VDC)
Isolation method	Photocoupler isolation
Unit power consumption	0.5 W max.
I/O power supply method	Supply from external source
I/O current consumption	No consumption
Current capacity of I/O power supply terminal	Without I/O power supply terminals
l/O refreshing method	Free-run refreshing
Terminal block type	Screwless push-in terminal 8 terminals ($\mathrm{A}+\mathrm{B}$)
Dimensions (W x H x D)	$12 \times 100 \times 71$
Weight	60 g max.
Disconnection/ short-circuit detection	Not supported
Protective function	Not supported

*1. Input filter time: No filter, $0.25,0.5,1,2,4,8,16,32,64,128,256 \mathrm{~ms}$.

Circuit layout

Terminal wiring

NX-IA3117

NX-IA3117

Digital output unit

Item	Specifications							
Model	NX-OD3121	NX-OD4121	NX-OD5121	NX-OD3153	NX-OD3256	NX-OD4256	NX-OD5256	NX-OD3257
Name	Transistor output unit							
Internal I/O common	NPN				PNP			
Capacity	4 points	8 points	16 points	4 points	4 points	8 points	16 points	4 points
Rated voltage	12 to 24 VDC			24 VDC	24 VDC			
Operating load voltage	10.2 to 28.8 VDC			15 to 28.8 VDC				
Maximum value of load current	0.5 A/point, 2 A/NX unit	0.5 A/point, $4 \mathrm{~A} / \mathrm{NX}$ unit		0.5 A/point, $2 \mathrm{~A} / \mathrm{NX}$ unit	0.5 A/point, $2 \mathrm{~A} / \mathrm{NX}$ unit	0.5 A/point, $4 \mathrm{~A} / \mathrm{NX}$ unit		$0.5 \mathrm{~A} /$ point, 2 A/NX unit
Maximum inrush current	4.0 A/point, 10 ms max.							
Leakage current	0.1 mA max.							
Residual voltage	1.5 V max.							
ON/OFF response time	$0.1 \mathrm{~ms} \mathrm{max./0.8} \mathrm{~ms} \mathrm{max}$.			300 ns max.	$0.5 \mathrm{~ms} \mathrm{max./1.0} \mathrm{~ms} \mathrm{max}$.			300 ns max.
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max .							
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)							
Isolation method	Photocoupler isolation			Digital isolator	Photocoupler isolation			Digital isolator
Unit power consumption	0.55 W max.	0.55 W max.	0.65 W max.	0.50 W max.	0.55 W max.	0.65 W max.	0.70 W max.	0.50 W max.
I/O power supply method	Supply from the NX bus							
1/O current consumption	10 mA max.	10 mA max.	20 mA max.	30 mA max.	20 mA max.	30 mA max.	40 mA max.	40 mA max.
Current capacity of I/O power supply terminal	0.5 A/terminal max.		Without I/O power supply terminals	0.5 A/terminal max.	0.5 A/terminal max.		Without I/O power supply terminals	0.5 A/terminal max.
1/O refreshing method	Switching synchronous I/O refreshing and free-run refreshing							
Terminal block type	Screwless push-in terminal 12 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 16 terminals $(A+B)$	Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 12 terminals ($A+B$)	Screwless push-in terminal 12 terminals $(A+B)$	Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 12 terminals $(A+B)$
Dimensions (W x H x D)	$12 \times 100 \times 71$							
Weight	70 g max.							
Disconnection/ short-circuit detection	Not supported							
Protective function	Not supported				With load short-circuit protection			

Circuit layout

NX-OD3256

NX-OD4256

Terminal wiring

NX-OD5121

	$\begin{gathered} \text { Additional I/O } \\ \text { power supply unit } \end{gathered}$		I/O power supplyconnection unit		I/O power supplyconnection unit		$\begin{aligned} & \text { Transistor output } \\ & \text { unit } \end{aligned}$		Twowirie type
$\underset{24 \mathrm{voc}}{4}$	\bullet-10v	Iov	$\mathrm{IOV}^{\text {c }}$	Iov	109	109	Outo	OUT1	
			ov	Iov	109	106	OUT2.	Oит3	
	109	106	Iov	Iov	106	108	OUT4	Oит	
			Iov	Iov	106	109	נт	OUt7	
	Iov	10 V	10 V	Iov	109	109	OUT8	оит9	ryp
			$\mathrm{lov}^{\text {c }}$	Iov	106	109	OUT	T11	
	109	106	Iov	Iov	109	109	OUT12.	OUT13	
			Iov	iov	109.	109	OUT14	OUT15	

NX-OD3256

NX-OD3257

NX-OD4256

NX-OD5256

Digital output unit (with Time Stamp function)

Item	Specifications	
Model	NX-OD2154	NX-OD2258
Name	Transistor output unit	
Internal I/O common	NPN	PNP
Capacity	2 points	2 points
Rated voltage	24 VDC	
Operating load voltage	15 to 28.8 VDC	
Maximum value of load current	0.5 A/point, 1 A/NX unit	
Maximum inrush current	4.0 A/point, 10 ms max .	
Leakage current	0.1 mA max.	
Residual voltage	1.5 V max.	
ON/OFF response time	300 ns max.	
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max .	
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)	
Isolation method	Digital isolator	
Unit power consumption	0.50 W max.	
I/O power supply method	Supply from the NX bus	
I/O current consumption	30 mA max.	40 mA max.
Current capacity of I/O power supply terminal	0.5 A/terminal max.	
I/O refreshing method	Time Stamp	
Terminal block type	Screwless push-in terminal 8 terminals ($A+B$)	
Dimensions (W x H x D)	$12 \times 100 \times 71$	
Weight	70 g max.	
Disconnection/ short-circuit detection	Not supported	
Protective function	Not supported	With load sho

Circuit layout
NX-OD2154

NX-OD2258

Terminal wiring

NX-OD2154

NX-OD2258

Digital output unit (with MIL connector)

Item	Specifications			
Model	NX-OD5121-5	NX-OD5256-5	NX-OD6121-5	NX-OD6256-5
Name	Transistor output unit			
Internal I/O common	NPN	PNP	NPN	PNP
Capacity	16 points	16 points	32 points	32 points
Rated voltage	12 to 24 VDC	24 VDC	12 to 24 VDC	24 VDC
Operating load voltage	10.2 to 28.8 VDC	20.4 to 28.8 VDC	10.2 to 28.8 VDC	20.4 to 28.8 VDC
Maximum value of load current	0.5 A/point, $2 \mathrm{~A} / \mathrm{NX}$ unit		0.5 A/point, $2 \mathrm{~A} /$ common, $4 \mathrm{~A} / \mathrm{NX}$ unit	
Maximum inrush current	4.0 A/point, 10 ms max .			
Leakage current	0.1 mA max.			
Residual voltage	1.5 V max.			
ON/OFF response time	$0.1 \mathrm{~ms} \mathrm{max}. / 0.8 \mathrm{~ms} \mathrm{max}$.	$0.5 \mathrm{~ms} \mathrm{max}. / 1.0 \mathrm{~ms} \mathrm{max}$.	$0.1 \mathrm{~ms} \mathrm{max}. / 0.8 \mathrm{~ms} \mathrm{max}$.	$0.5 \mathrm{~ms} \mathrm{max./1.0} \mathrm{~ms} \mathrm{max}$.
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.			
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)			
Isolation method	Photocoupler isolation			
Unit power consumption	0.60 W max.	0.70 W max.	0.80 W max.	1.0 W max.
I/O power supply method	Supply from external source			
I/O current consumption	30 mA max.	40 mA max.	50 mA max.	80 mA max.
Current capacity of I/O power supply terminal	Without I/O power supply terminals			
I/O refreshing method	Switching synchronous I/O refreshing and free-run refreshing			
Terminal block type	MIL connector 20 terminals		MIL connector 40 terminals	
Dimensions (W x H x D)	$30 \times 100 \times 71$			
Weight	80 g max.	85 g max.	90 g max.	95 g max.
Disconnection/ short-circuit detection	Not supported			
Protective function	Not supported	With load short-circuit protection	Not supported	With load short-circuit protection

Circuit layout

NX-OD5121-5

NX-OD5256-5

Terminal wiring

NX-OD5121-5

- Be sure to wire both pins 3 and 4 (COM).
- Be sure to wire both pins 1 and $2(+\mathrm{V})$.

NX-OD5256-5

24 VDC	Signal name	$\begin{aligned} & \text { Connector } \\ & \text { pin } \end{aligned}$		Signal name COM (+V)	
	$\operatorname{COM}(+\mathrm{V})$	1	2		
	0V	3	4	OV	
	OUT15	5	6	OUT07	
L	OUT14	7	8	OUT06	
	OUT13	9	10	OUT05	
	OUT12	11	12	OUT04	
	OUT11	13	14	OUT03	
	OUT10	15	16	OUT02	
	OUT09	17	18	OUT01	
	OUT08	19	20	OUT00	L

- Be sure to wire both pins 1 and $2(\mathrm{COM}(+\mathrm{V}))$.
- Be sure to wire both pins 3 and 4 (0V).

Terminal wiring

NX-OD6121-5

- Be sure to wire both pins 21 and 22 (+V0).
- Be sure to wire both pins 23 and 24 (COM0).
- Be sure to wire both pins 1 and 2 (+V1).
- Be sure to wire both pins 3 and 4 (COM1).

NX-OD6256-5

- Be sure to wire both pins 21 and $22(\mathrm{COMO}(+\mathrm{V}))$.
- Be sure to wire both pins 1 and 2 (COM1 (+V)).
- Be sure to wire both pins 23 and 24 (0VO).
- Be sure to wire both pins 3 and 4 (0V1).

Relay output unit

Item	Specifications	
Model	NX-OC2633	NX-OC2733
Name	Relay output unit	
Relay type	N.O. contact	N.O. + N.C. contact
Capacity	2 points, independent contacts	
Max. switching capacity	$250 \mathrm{VAC} / 2 \mathrm{~A}(\cos \varnothing=1), 250 \mathrm{VAC} / 2 \mathrm{~A}(\cos \varnothing=0.4), 24 \mathrm{VDC} / 2 \mathrm{~A}, 4 \mathrm{~A} / \mathrm{unit}$	
Min. switching capacity	$5 \mathrm{VDC}, 1 \mathrm{~mA}$	
ON/OFF response time	15 ms max .	
Relay service life	Electrical: 100,000 operations ${ }^{11}$Mechanical: $20,000,000$ operations	
Dielectric strength	Between A1/B1 terminals and A3/B3 terminals: 2,300 VAC for 1 min at a leakage current of 5 mA max. Between the external terminals and GR terminal: 2,300 VAC for 1 min at a leakage current of 5 mA max. Between the external terminals and internal circuits: 2,300 VAC for 1 min at a leakage current of 5 mA max Between the internal circuit and GR terminal: 510 VAC for 1 min at a leakage current of 5 mA max.	Between A1/3, B1/3 terminals and A5/7, B5/7 terminals: $2,300 \mathrm{VAC}$ for 1 min at a leakage current of 5 mA max. Between the external terminals and functional ground terminal: 2,300 VAC for 1 min at a leakage current of 5 mA max. Between the external terminals and internal circuits: 2,300 VAC for 1 min at a leakage current of 5 mA max. Between the internal circuit and functional ground terminal: 510 VAC for 1 min at a leakage current of 5 mA max.
Insulation resistance	Between A1/B1 terminals and A3/B3 terminals: $20 \mathrm{M} \Omega \mathrm{min}$. (500 VDC) Between the external terminals and internal circuits: $20 \mathrm{M} \Omega$ min. (500 VDC) Between the internal circuit and GR terminal: $20 \mathrm{M} \Omega$ min. (100 VDC) Between the external terminals and GR terminal: $20 \mathrm{M} \Omega$ min. (500 VDC)	Between A1/3, B1/3 terminals and A5/7, B5/7 terminals: $20 \mathrm{M} \Omega \mathrm{min}$. (500 VDC) Between the external terminals and functional ground terminal: $20 \mathrm{M} \Omega \mathrm{min}$. (500 VDC) Between the external terminals and internal circuits: $20 \mathrm{M} \Omega \mathrm{min}$. (500 VDC) Between the internal circuit and functional ground terminal: $20 \mathrm{M} \Omega \mathrm{min}$. (100 VDC)
Vibration resistance	Conforms to IEC60068-2-6. 5 to 8.4 Hz with amplitude of $3.5 \mathrm{~mm}, 8.4$ to 150 Hz , acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}, 100 \mathrm{~min}$ each in X, Y and Z directions (10 sweeps of 10 min each $=100 \mathrm{~min}$ total)	
Shock resistance	$100 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in X, Y and Z directions	
Isolation method	Relay isolation	
Unit power consumption	0.80 W max.	0.95 W max.
I/O power supply method	Supply from external source	
I/O current consumption	No consumption	
Current capacity of I/O power supply terminal	Without I/O power supply terminals	
I/O refreshing method	Free-run refreshing	
Terminal block type	Screwless push-in terminal 8 terminals ($\mathrm{A}+\mathrm{B}$)	
Dimensions (W x H x D)	$12 \times 100 \times 71$	
Weight	65 g max .	70 g max.
Disconnection/ short-circuit detection	Not supported	
Protective function	Not supported	

*1. Electrical service life will vary depending on the current value. Refer to "NX-series digital I/O units user's manual" for details.

Digital I/O unit (with MIL connector)

Item	Specifications	
Model	NX-MD6121-5	NX-MD6256-5
Name	DC input/transistor output unit	
Capacity	16 inputs/16 outputs	
- Internal I/O common	NPN	PNP
¢ Rated voltage	12 to 24 VDC	24 VDC
O Operating load voltage	10.2 to 28.8 VDC	20.4 to 28.8 VDC
$\begin{array}{l\|l} \text { 응 } & \begin{array}{l} \text { Maximum value of load } \\ \text { current } \end{array} \\ \hline \end{array}$	0.5 A/point, $2 \mathrm{~A} / \mathrm{NX}$ unit	
¢ Maximum inrush current	4.0 A/point, 10 ms max .	
근 Leakage current	0.1 mA max.	
O. Residual voltage	1.5 V max.	
ON/OFF response time	$0.1 \mathrm{~ms} \mathrm{max./0.8} \mathrm{~ms} \mathrm{max}$.	$0.5 \mathrm{~ms} \mathrm{max./1.0} \mathrm{~ms} \mathrm{max}$.
Internal I/O common	For both NPN/PNP	
주 Rated input voltage	24 VDC (15 to 28.8 VDC)	
C Input current ${ }^{\text {¹ }}$	7 mA	
ᄃ ON voltage	15 VDC min.	
\% ON current	3 mA min.	
¢ OFF voltage	5 VDC max.	
\# OFF current	1 mA max .	
드 ON/OFF response time	$20 \mu \mathrm{~s}$ max. $/ 400 \mu \mathrm{~s} \mathrm{max}$	
Input filter time	No filter, $0.25 \mathrm{~ms}, 0.5 \mathrm{~ms}, 1 \mathrm{~ms}$ (default), $2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}, 32 \mathrm{~ms}, 64 \mathrm{~ms}, 128 \mathrm{~ms}, 256 \mathrm{~ms}$	
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.	
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)	
Isolation method	Photocoupler isolation	
Unit power consumption	0.70 W max.	0.75 W max.
//O power supply method	Supply from external source	
I/O current consumption	30 mA max.	40 mA max.
Current capacity of I/O power supply terminal	Without I/O power supply terminals	
I/O refreshing method	Switching synchronous I/O refreshing and free-run refreshing	
Terminal block type	2 MIL connectors 20 terminals	
Dimensions (W x H x D	$30 \times 100 \times 71$	
Weight	105 g max.	110 g max.
Disconnection/ short-circuit detection	Not supported	
Protective function	Not supported	With load short-circuit protection

*1. Typical rated current at 24 VDC.

Terminal wiring

NX-MD6121-5
CN1 (left) output terminal
 - Be sure to wire both pins 1 and $2(+\mathrm{V} 0)$ of CN1.

CN2 (right) input terminal

- The polarity of the input power supply of CN2 can
be connected in either direction.
- Be sure to wire both pins 3 and 4 (COM1) of CN2 and set the same polarity for both pins.

Circuit layout

NX-MD6256-5
CN1 (left) output circuit

CN2 (right) input circuit

Terminal wiring

NX-MD6256-5
CN1 (left) output terminal

- Be sure to wire both pins 3 and $4(\mathrm{COM0}(+\mathrm{V}))$ of CN1. - Be sure to wire both pins 1 and 2 (OVO) of CN1.

CN2 (right) input terminal

- The polarity of the input power supply of CN2 can be connected in either direction.
- Be sure to wire both pins 3 and 4 (COM1) of CN2, and set the same polarity for both pins.

Analog I/O unit

Current input unit

Item		Specifications								
Model		NX-AD2203	NX-AD3203	NX-AD4203	NX-AD2204	NX-AD3204	NX-AD4204	NX-AD2208	NX-AD3208	NX-AD4208
Name		Current input unit								
Input range		4 to 20 mA								
Input method		Single-ended input			Differential input					
Capacity		2 points	4 points	8 points	2 points	4 points	8 points	2 points	4 points	8 points
Input conversion range		-5% to 105% (full scale)								
Absolute maximum rating		$\pm 30 \mathrm{~mA}$								
Input impedance		250Ω min.	250Ω min.	$85 \Omega \mathrm{~min}$.	$250 \Omega \mathrm{~min}$.	250Ω min.	$85 \Omega \mathrm{~min}$.	250Ω min.	250Ω min.	$85 \Omega \mathrm{~min}$.
Resolution		1/8,000 (full scale)						1/30,000 (full scale)		
Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.2 \%$ (full scale)						$\pm 0.1 \%$ (full scale)		
	0 to $55^{\circ} \mathrm{C}$	$\pm 0.4 \%$ (full scale)						$\pm 0.2 \%$ (full scale)		
Conversion time		$250 \mu \mathrm{~s} / \mathrm{point}$						$10 \mu \mathrm{~s} / \mathrm{point}$		
Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.								
Insulation resistance		$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)								
Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)								
Unit power consumption		0.90 W max. 0.90 W max.		1.05 W max.	0.90 W max.	0.90 W max.	1.05 W max.	0.90 W max.	0.95 W max.	1.10 W max.
I/O power supply method I/O current consumption		Supply from the NX bus			No supply					
		No consumption								
Current capacity of I/O power supply terminal		0.1 A/terminal max.			Without I/O power supply terminals					
I/O refreshing method		Free-run refreshing						Switching synchronous I/O refreshing and free-run refreshing		
Terminal block type		Screwless push-in terminal 8 terminals $(A+B)$	Screwless push-in terminal 12 terminals ($A+B$)	Screwless push-in terminal 16 terminals $(A+B)$	Screwless push-in terminal 8 terminals $(A+B)$	Screwless push-in terminal 12 terminals $(A+B)$	Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 8 terminals $(A+B)$	Screwless push-in termi- nal 12 terminals $(\mathrm{A}+\mathrm{B})$	Screwless push-in terminal 16 terminals $(A+B)$
Dimensions (W x H x D)		$12 \times 100 \times 71$								
Weight		70 g max.								
Input disconnection detection		Supported								

Terminal wiring

NX-AD2204/NX-AD2208

NX-AD3204/NX-AD3208

NX-AD4204/NX-AD4208

Voltage input unit

Item		Specifications								
Model		NX-AD2603	NX-AD3603	NX-AD4603	NX-AD2604	NX-AD3604	NX-AD4604	NX-AD2608	NX-AD3608	NX-AD4608
Name		Voltage input unit								
Input rang		-10 to 10 V								
Input method		Single-ended input			Differential input					
Capacity		2 points 4 points 8 points			2 points	4 points	8 points	2 points	4 points	8 points
Input conversion range		-5% to 105% (full scale)								
Absolute maximum rating		$\pm 15 \mathrm{~V}$								
Input impedance		$1 \mathrm{M} \Omega \mathrm{min}$.								
Resolution		1/8,000 (full scale)						1/30,000 (full scale)		
Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.2 \%$ (full scale)						$\pm 0.1 \%$ (full scale)		
	0 to $55^{\circ} \mathrm{C}$	$\pm 0.4 \%$ (full scale)						$\pm 0.2 \%$ (full scale)		
Conversion time		$250 \mu \mathrm{~s} /$ point						$10 \mu \mathrm{~s} /$ point		
Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.								
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)								
Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)								
Unit power consumption I/O power supply method		1.05 W max.	1.10 W max.	1.15 W max.	1.05 W max.	1.10 W max.	1.15 W max.	1.05 W max.	1.10 W max.	1.15 W max.
		Supply from the NX bus			No supply					
I/O current consumption		No consumption								
Current capacity of I/O power supply terminal		0.1 A/terminal max.			Without I/O power supply terminals					
I/O refreshing method		Free-run refreshing						Switching synchronous I/O refreshing and free-run refreshing		
Terminal block type		Screwless push-in terminal 8 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 12 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in termi- nal 16 terminals $(A+B)$	Screwless push-in terminal 8 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in termi- nal 12 terminals $(A+B)$	Screwless push-in termi- nal 16 terminals $(A+B)$	Screwless push-in termi- nal 8 terminals $(A+B)$	Screwless push-in termi- nal 12 terminals $(A+B)$	Screwless push-in termi- nal 16 terminals $(A+B)$
Dimensions (W x H x D)		$12 \times 100 \times 71$								
Weight		70 g max.								
Input disconnection detection		Not supported								

Circuit layout
NX-AD2604/NX-AD2608

NX-AD3604/NX-AD3608

NX-AD4604/NX-AD4608

Terminal wiring

NX-AD2604/NX-AD2608

NX-AD3604/NX-AD3608

NX-AD4604/NX-AD4608

Current output unit

Item		Specifications			
Model		NX-DA2203	NX-DA3203	NX-DA2205	NX-DA3205
Name		Current output unit			
Output range		4 to 20 mA			
Capacity		2 points	4 points	2 points	4 points
Output conversion range		-5% to 105\% (full scale)			
Allowable load resistance		600Ω min.	350Ω min.	600Ω min.	350Ω min.
Resolution		1/8,000 (full scale)		1/30,000 (full scale)	
Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ (full scale)		$\pm 0.1 \%$ (full scale)	
	0 to $55^{\circ} \mathrm{C}$	$\pm 0.6 \%$ (full scale)		$\pm 0.3 \%$ (full scale)	
Conversion time				$10 \mu \mathrm{~s} / \text { point }$	
Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max .			
Insulation resistance		$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)			
Isolation method		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)			
Unit power consumption		1.75 W max.	1.80 W max.	1.75 W max.	1.80 W max.
I/O power supply method		Supply from the NX bus			
		No consumption			
Current capacity of I/O power supply terminal		0.1 A/terminal max.			
I/O refreshing method		Free-run refreshing		Switching synchronous I/O refreshing and free-run refreshing	
Terminal block type		Screwless push-in terminal 8 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 12 terminals $(A+B)$	Screwless push-in terminal 8 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 12 terminals $(A+B)$
Dimensions (W x H x D)		$12 \times 100 \times 71$			
Weight		70 g max.			

Voltage output unit

Item	Specifications			
Model	NX-DA2603	NX-DA3603	NX-DA2605	NX-DA3605
Name	Voltage output unit			
Output range	-10 to 10 V			
Capacity	2 points	4 points	2 points	4 points
Output conversion range	-5% to 105\% (full scale)			
Allowable load resistance	$5 \mathrm{k} \Omega \mathrm{min}$.			
Output impedance	0.5Ω max.			
Resolution	1/8,000 (full scale)		1/30,000 (full scale)	
Overall ${ }^{\text {Pr }}$ / $25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ (full scale)		$\pm 0.1 \%$ (full scale)	
accuracy 0 to $55^{\circ} \mathrm{C}$	$\pm 0.5 \%$ (full scale)		$\pm 0.3 \%$ (full scale)	
Conversion time	$250 \mu \mathrm{~s} / \mathrm{point}$		$10 \mu \mathrm{~s} / \mathrm{point}$	
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.			
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)			
Isolation method	Between the input and the NX bus: Power = Transformer, Signal = Digital isolator (no isolation between inputs)			
Unit power consumption	1.10 W max.	1.25 W max.	1.10 W max.	1.25 W max.
1/O power supply method	Supply from the NX bus			
I/O current consumption	No consumption			
Current capacity of I/O power supply terminal	0.1 A/terminal max.			
I/O refreshing method	Free-run refreshing		Switching synchronous I/O refreshing and free-run refreshing	
Terminal block type	Screwless push-in terminal 8 terminals $(A+B)$	Screwless push-in terminal 12 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 8 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 12 terminals ($\mathrm{A}+\mathrm{B}$)
Dimensions (W x H x D)	$12 \times 100 \times 71$			
Weight	70 g max.			

Circuit layout

NX-DA2603/DA2605

NX-DA3603/DA3605

Terminal wiring

NX-DA2603/DA2605

NX-DA3603/DA3605

Temperature input unit

Thermocouple input unit

Item		Specifications					
Model		NX-TS2101	NX-TS3101	NX-TS2102	NX-TS3102	NX-TS2104	NX-TS3104
Name		Thermocouple type					
Capacity		K, J, T, E, L, U, N, R, S, B, WRe5-26, PLII		2 points	4 points	2 points	4 points
Temperature sensor				K, J, T, E, L, U, N, R, S, WRe5-26, PLII			
Input conversion range		$\pm 20^{\circ} \mathrm{C}$ of the input range					
Input detection current		Approx. $0.1 \mu \mathrm{~A}$					
Input impedance		$20 \mathrm{~K} \Omega \mathrm{~min}$.					
Absolute maximum rating		$\pm 130 \mathrm{mV}$					
Resolution		$0.1^{\circ} \mathrm{C} \mathrm{max}.{ }^{1}$		0.01 ${ }^{\circ} \mathrm{C}$ max.		0.001 ${ }^{\circ} \mathrm{C}$ max.	
Warm-up period		30 minutes		45 minutes			
Reference accuracy and temperature coefficient	Conversion time	250 ms		10 ms		60 ms	
	Temperature range	$\begin{aligned} & \mathrm{K}, \mathrm{~N}\left(-200 \text { to } 1,300^{\circ} \mathrm{C}\right) \\ & \mathrm{J}\left(-200 \text { to } 1,200^{\circ} \mathrm{C}\right) \\ & \mathrm{T}\left(-200 \text { to } 400^{\circ} \mathrm{C}\right) \\ & \mathrm{E}\left(-200 \text { to } 1,000^{\circ} \mathrm{C}\right) \\ & \mathrm{L}\left(-200 \text { to } 900^{\circ} \mathrm{C}\right) \\ & \mathrm{U}\left(-200 \text { to } 600^{\circ} \mathrm{C}\right) \\ & \mathrm{R}, \mathrm{~S}\left(-50 \text { to } 1,700^{\circ} \mathrm{C}\right) \\ & \mathrm{B}\left(0 \text { to } 1,800^{\circ} \mathrm{C}\right) \\ & \text { WRe5-26 }\left(0 \text { to } 2,300^{\circ} \mathrm{C}\right) \\ & \mathrm{PLII}\left(0 \text { to } 1,300^{\circ} \mathrm{C}\right) \end{aligned}$		```K, N (-200 to \(\left.1,300^{\circ} \mathrm{C}\right)\) \(\mathrm{K}\left(-20\right.\) to \(600^{\circ} \mathrm{C}\), high resolution) \(J\left(-200\right.\) to \(\left.1,200^{\circ} \mathrm{C}\right)\) \(J\left(-20\right.\) to \(600^{\circ} \mathrm{C}\), high resolution) T (-200 to \(400^{\circ} \mathrm{C}\)) E (-200 to \(\left.1,000^{\circ} \mathrm{C}\right)\) L (-200 to \(900^{\circ} \mathrm{C}\)) U (-200 to \(600^{\circ} \mathrm{C}\)) R, S (-50 to \(1,700^{\circ} \mathrm{C}\)) WRe5-26 (0 to \(2,300^{\circ} \mathrm{C}\)) PLII (0 to \(1,300^{\circ} \mathrm{C}\))```			
	Accuracy ${ }^{*}$	$\begin{aligned} & \mathrm{K} / \mathrm{J} / \mathrm{E} / \mathrm{L} / \mathrm{N} / \mathrm{R} / \mathrm{S} / \mathrm{PLII}(\pm 0.1 \%) \\ & \mathrm{T}(\pm 0.2 \%) \\ & \mathrm{U}(\pm 0.15 \%) \\ & \mathrm{WRe5}-26(\pm 0.05 \%) \end{aligned}$		$\begin{aligned} & \mathrm{T}(\pm 0.22 \%) \\ & \text { R/S (} \pm 0.19 \%) \\ & \mathrm{N}(\pm 0.11 \%) \\ & \mathrm{U} \text { (} \pm 0.09 \%) \\ & \text { K/J/E/L/WRe5-26/PLII }(\pm 0.05 \%) \end{aligned}$			
Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.					
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)					
Isolation method		Between the input and the NX bus: Power = Transformer Signal $=$ Photocoupler Between inputs: Power = Transformer, Signal $=$ Photocoupler		Between the input and the NX bus: Power = Transformer, Signal = Digital isolator Between inputs: Power = Transformer Signal = Digital isolator			
Unit power consumption		0.90 W max.	1.30 W max.	0.80 W max.	1.10 W max.	0.80 W max.	1.10 W max.
I/O power supply method		No supply					
I/O current consumption		No consumption					
Current capacity of I/O power supply terminal		Without I/O power supply terminals					
I/O refreshing method		Free-run refreshing					
Terminal block type		Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 16 terminals $x 2$ $[[(A+B) \&(C+D)]$	Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 16 terminals $\times 2$ $\mid[(A+B) \&(C+D)]$	Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 16 terminals x 2 $[[(\mathrm{A}+\mathrm{B}) \&(\mathrm{C}+\mathrm{D})]$
Dimensions (W x H x D)		$12 \times 100 \times 71$	$24 \times 100 \times 71$	$12 \times 100 \times 71$	$24 \times 100 \times 71$	$12 \times 100 \times 71$	$24 \times 100 \times 71$
Weight		70 g max.	140 g max .	70 g max.	140 g max.	70 g max.	140 g max.

${ }^{*} 1$. The resolution is $0.2^{\circ} \mathrm{C}$ max. when the input type is R, S or W .
*2. Accuracy for temperature inputs as percentatge of process value and typical value $25^{\circ} \mathrm{C}$ ambient temperature (refer to the user's manual for detailed information).

Terminal wiring

NX-TS2101/TS2102/TS2104

NX-TS3101/TS3102/TS3104

Resistance thermometer input unit

Item		Specifications					
Model		NX-TS2201	NX-TS3201	NX-TS2202	NX-TS3202	NX-TS2204	NX-TS3204
Name		Resistance thermometer type					
Capacity		2 points	4 points	2 points	4 points	2 points	4 points
Temperature sensor		Pt100 (three-wire)/Pt1000 (three-wire)		Pt100 (three-wire)		Pt100 (three-wire)/Pt1000 (three-wire)	
Input conversion range		$\pm 20^{\circ} \mathrm{C}$ of the input range					
Input detection current		Approx. 0.25 mA					
Resolution		$0.1^{\circ} \mathrm{C}$ max.		0.01º${ }^{\circ} \mathrm{C}$ max.		$0.001{ }^{\circ} \mathrm{C}$ max.	
Effect of conductor resistance		$0.06^{\circ} \mathrm{C} / \Omega \mathrm{max}$. (also 20Ω max.)					
Warm-up period		10 minutes		30 minutes			
Reference accuracy and temperature coefficient	Conversion time	250 ms		10 ms		60 ms	
	Temperature range	-200 to $850^{\circ} \mathrm{C}$					
	Accuracy ${ }^{*}$	$\pm 0.1 \%$		$\pm 0.05 \%$			
Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.					
Insulation resistance		$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)					
Isolation method		Between the input and the NX bus: Power = Transformer Signal $=$ Photocoupler Between inputs: Power = Transformer Signal $=$ Photocoupler		Between the input and the NX bus: Power = Transformer Signal = Digital isolator Between inputs: Power = Transformer Signal = Digital isolator			
Unit power consumption		0.90 W max.	1.30 W max.	0.75 W max.	1.05 W max.	0.75 W max.	1.05 W max.
I/O power supply method		No supply					
I/O current consumption		No consumption					
Current capacity of I/O power supply terminal		Without I/O power supply terminals					
I/O refreshing method		Free-run refreshing					
Terminal block type		Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 16 terminals $\times 2$ $\mid[(A+B) \&(C+D)]$	Screwless push-in terminal 16 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminal 16 terminals $\times 2$ $[(A+B) \&(C+D)]$	Screwless push-in terminal 16 terminals $(\mathrm{A}+\mathrm{B})$	Screwless push-in terminal 16 terminals x 2 $[(A+B) \&(C+D)]$
Dimensions (W x H x D)		$12 \times 100 \times 71$	$24 \times 100 \times 71$	$12 \times 100 \times 71$	$24 \times 100 \times 71$	$12 \times 100 \times 71$	$24 \times 100 \times 71$
Weight		70 g max.	140 g max.	70 g max.	130 g max.	70 g max.	130 g max.

*1. Accuracy for temperature inputs as percentatge of process value and typical value $25^{\circ} \mathrm{C}$ ambient temperature (refer to the user's manual for detailed information).

Terminal wiring

NX-TS2201/TS2202/TS2204

NX-TS3201/TS3202/TS3204

Temperature input unit NX-TS320ロ				
A1				
NC	NC	NC	NC	
NC	NC	NC	NC	
NC	NC	NC	NC	
NC	NC	NC	NC	
A2	B2	A4	B4	
NC	B2	NC	B4	
A1	B1	A3	B3	
NC	B1	NC	B3	
A8	B			

Position interface unit

Incremental encoder input unit

Item			Specifications					
Model			NX-EC0112	NX-EC0122	NX-EC0212	NX-EC0222	NX-EC0132	NX-EC0142
Name			Incremental encoder input unit					
Number of channels			1 channel		2 channels		1 channel	
Input signals			Counter: Phases A, B and Z External inputs: 3		Counter: Phases A, B and Z External inputs: None		Counter: Phases A, B and Z External inputs: 3	
Input form	Type		$\begin{aligned} & \text { NPN type } \\ & 500 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { PNP type } \\ & 500 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { NPN type } \\ & 500 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { PNP type } \\ & 500 \mathrm{kHz} \\ & \hline \end{aligned}$	Line driver, 4 MHz	
		Voltage	20.4 to 28.8 VDC (24 VDC +20\%/-15\%) ON voltage: 19.6 VDC min. $/ 3 \mathrm{~mA}$ min. OFF voltage: 4.0 VDC max. $/ 1 \mathrm{~mA}$ max.				EIA standard RS-422-A line driver levels Impedance: $120 \Omega \pm 5 \%$ Level input voltage: $\mathrm{V}_{I T+}: 0.1 \mathrm{~V}$ min. $\mathrm{V}_{\text {IT.: }} 0.1 \mathrm{~V} \mathrm{~min}$. Hysteresis voltage: Vhys $\left(V_{\text {IT+ }}-V_{\text {IT. }}\right): 60 \mathrm{Mv}$	
		Current	4.2 mA (24 VDC)					
		5 V power supply for encoder	-				Output voltage: 5 VDC $\pm 5 \%$ Output current: 500 mA max.	
		Maximum response frequency	Phases A and B: Single-phase 500 kHz (phase difference pulse input $\times 4$: 125 kHz), Phase Z: 125 kHz				Phases A and B: Single-phase 4 MHz (phase differential pulse input $\times 4$: 1 MHz), Phase Z: 1 MHz	
Counting units			Pulses					
Pulse input method			Phase difference pulse (multiplication $\times 2 / 4$), pulse + direction inputs or up and down pulse inputs					
Counter range			-2,147,483,648 to 2,147,483,647 pulses					
Counter functions	Type		Ring counter or linear counter					
	Controls		Gate control, counter reset and counter preset					
	Latch function		Two external input latches and one internal latch					
	Measurements		Pulse rate measurement and pulse period measurement					
External input specifications	Input voltage		$\begin{array}{\|l} \hline 20.4 \text { to } 28.8 \text { VDC } \\ \text { (24 VDC }+20 \% /-15 \%) \end{array}$		-		$\begin{aligned} & \begin{array}{l} 20.4 \text { to } 28.8 \text { VDC } \\ (24 \text { VDC }+20 \% /-15 \%) \end{array} \\ & \hline \end{aligned}$	
	Input current		4.6 mA (24 VDC)		-		3.5 mA (24 VDC)	
	ON voltage/ON current		15 VDC min./3 mA min.		-		15 VDC min./3 mA min.	
	OFF	voltage/OFF current	4.0 VDC max./1 mA max.		-		5.0 VDC max./1 mA max.	
	ON/OFF response time		$1 \mu \mathrm{~s}$ max./2 $\mu \mathrm{s}$ max.		-		$1 \mu \mathrm{~s} \mathrm{max}. / 1 \mu \mathrm{~s}$ max.	
	Inte	rnal I/O common	NPN	PNP	-		NPN	PNP
Dielectric strength			510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.					
Insulation resistance			$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)					
Isolation method			Photocoupler isolation				Digital isolator	
Unit power consumption			0.85 W max.	0.95 W max.	0.85 W max.	0.95 W max.	0.95 W max.	1.05 W max.
I/O power supply source			Supplied from the NX bus. 20.4 to 28.8 VDC (24 VDC +20\%/-15\%)					
Current consumption from I/O power supply			None				30 mA	
Current capacity of I/O power supply terminal			0.3 A max. per terminal for encoder supply section and 0.1 A max. per terminal for other sections		0.3 A max. per terminal		0.1 A max. per terminal	
I/O refreshing method			Free-run refreshing or synchronous I/O refreshing ${ }^{1}$					
Terminal block type			$\begin{aligned} & \text { Screwless push-in terminal } \\ & 16 \text { terminals }(A+B) \\ & \hline \end{aligned}$		Screwless push-in terminal 12 terminals ($\mathrm{A}+\mathrm{B}$)		Screwless push-in terminal 12 terminals x $2[(A+B) \times 2]$	
Dimensions (W x H x D)			$12 \times 100 \times 71$		$12 \times 100 \times 71$		$24 \times 100 \times 71$	
Weight			70 g		70 g		130 g	
Failure detection			None					
Protection			None					

*1. The I/O refreshing method is automatically set according to the connected communication unit and CPU unit.

NX-EC0222

NX-EC0132/EC0142

External Inputs (NX-EC0132)

External Inputs (NX-EC0142)

Terminal wiring

NX-EC0212

NX-EC0222

NX-EC0132/EC0142

SSI input unit

*1. The I/O refreshing method is automatically set according to the connected communication unit and CPU unit.
*2. The maximum transmission distance for an SSI input unit depends on the baud rate due to the delay that can result from the responsiveness of the connected encoder and cable impedance. The maximum transmission distance is only a guideline. Review the specifications for the cables and encoders in the system and evaluate the operation of the equipment before use.

Pulse output unit

Item		Specifications	
Model		NX-PG0112	NX-PG0122
Name		Pulse output unit	
Number of axes		1 axis	
I/O signals		External inputs: 2 general-purpose inputs External outputs: 3 (forward direction pulse, reverse direction pulse and a general-purpose outputs)	
Control method		Open-loop control through pulse train output	
Controlled drive		Servo drive with a pulse train input or a stepper motor drive	
Pulse output form		Open collector output	
Control unit		Pulses	
Maximum pulse output speed		500 kpps	
Pulse output method		Forward/reverse direction pulse outputs or pulse + direction outputs	
Position control range		-2,147,483,648 to 2,147,483,647 pulses	
Velocity control range		1 to 500,000 pps	
Positioning ${ }^{\text {¹ }}$	Single-axis position control	Absolute positioning, relative positioning and interrupt feeding	
	Single-axis velocity control	Velocity control (velocity feeding in position control mode)	
	Single-axis synchronized control	Cam operation and gear operation	
	Single-axis manual operation	Jogging	
	Auxiliary function for single-axis control	Homing, stopping and override changes	
External input specifications	Input voltage	20.4 to 28.8 VDC (24 VDC +20\%/-15\%)	
	Input current	4.6 mA (24 VDC)	
	ON voltage/ON current	15 VDC min./3 mA min.	
	OFF voltage/OFF current	4.0 VDC max./1 mA max.	
	ON/OFF response time	$1 \mu \mathrm{~s}$ max./2 $\mu \mathrm{s}$ max.	
	Internal I/O common processing	NPN	PNP
External output specifications	Rated voltage	24 VDC (15 to 28.8 VDC)	
	Maximum load current	30 mA	
	ON/OFF response time	$5 \mu \mathrm{~s}$ max./5 $\mu \mathrm{s}$ max.	
	Internal I/O common processing	NPN ${ }^{\text {P }}$ PNP	
	Residual voltage	1.0 V max.	
	Leakage current	0.1 mA	
Dielectric strength		510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max .	
Insulation resistance		$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)	
Isolation method		External inputs: Photocoupler isolation External outputs: Digital isolator	
Unit power consumption		0.8 W max. 0.9 W max.	
I/O power supply source		Supplied from the NX bus. 20.4 to 28.8 VDC (24 VDC +20\%/-15\%)	
Current consumption from I/O power supply		20 mA	
Current capacity of I/O power supply terminal		0.1 A max. per terminal	
Cable length		3 m max.	
I/O refreshing method		Synchronous I/O refreshing*2	
Terminal block type		Screwless push-in terminal 16 terminals $(A+B)$	
Dimensions (W x H x D)		$12 \times 100 \times 71$	
Weight		70 g	
Failure detection		None	
Protection		None	

*1. These functions are supported when you also use the MC function module in the NJ-series CPU unit. Refer to the NJ-series CPU unit motion control user's manual (Cat.No. W507) for details. A pulse output unit only outputs pulses during the control period based on commands received at a fixed period. Target position calculations (distribution calculations) for acceleration/deceleration control or for each control period must be performed on the controller that is connected as the host.
*2. The I/O refreshing method is automatically set according to the connected communication unit and CPU unit.

Circuit layout

NX-PG0112

Pulse Output and
External Output

Terminal wiring

NX-PG0112

NX-PG0122

External Inputs

Power unit

NX bus power supply unit

Item	Specifications
Model	NX-PD1000
Name	NX bus power supply unit
Power supply voltage	24 VDC (20.4 to 28.8 VDC)
NX unit power supply capacity	10 W max. (refer to installation orientation and restrictions for details)
NX unit power supply efficiency	70%
Unwired terminal current capacity	4 A max. (including the current of through wiring)
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)
Isolation method	No-isolation
Unit power consumption	0.45 W max.
I/O current consumption	No consumption
Terminal block type	Screwless push-in terminal 8 terminals $(\mathrm{A}+\mathrm{B}$ with FG)
Dimensions (W x H x D)	$12 \times 100 \times 71$
Weight	$65 \mathrm{~g} \mathrm{max}$.

I/O power feed unit

Item	Specifications	
Model	NX-PF0630	NX-PF0730
Name	Additional I/O power supply unit	
Power supply voltage	5 to 24 VDC (4.5 to 28.8 VDC$)^{1}$	
I/O power supply maximum current	4 A	10 A
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max .	
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. between isolated circuits (at 100 VDC)	
Isolation method	No-isolation	
Unit power consumption	0.45 W max.	
I/O current consumption	10 mA max.	
Current capacity of I/O power supply terminal	4 A max.	10 A max.
Terminal block type	Screwless push-in terminal 8 terminals $(A+B)$	
Dimensions (W x H x D	$12 \times 100 \times 71$	
Weight	65 g max.	

*1. Use an output voltage that is appropriate for the I/O circuits of the NX units and the connected external devices.

I/O power supply connection unit

Item	Specifications		
Model	NX-PC0010	NX-PC0020	NX-PC0030
Name	I/O power supply connection unit		
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.		
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)		
Isolation method	No-isolation		
Unit power consumption	0.45 W max.		
I/O current consumption	No consumption		
Current capacity of I/O power supply terminal	4 A/terminal max.		
Terminal block type	Screwless push-in terminal 16 terminals (A + B)		
Number of I/O power supply terminals	IOG: 16 terminals	IOV: 16 terminals	IOG: 8 terminals IOV: 8 terminals
Dimensions (W x H x D)	$12 \times 100 \times 71$		
Weight	65 g max.		

System unit

Shield connection unit (grounding terminal)

Item	Specifications
Model	NX-TBX01
Name	Shield connection unit
Dielectric strength	510 VAC between isolated circuits for 1 minute at a leakage current of 5 mA max.
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)
Isolation method	Isolation between the SHLD functional ground terminal and internal circuit: no-isolation
Unit power consumption	0.45 W max.
I/O current consumption	No consumption
Terminal block type	Screwless push-in terminal 16 terminals (A + B with FG)
Number of shield terminals	14 terminals (the following two terminals are Functional Ground terminals)
Dimensions (W x H x D)	$12 \times 100 \times 71$
Weight	$65 \mathrm{~g} \mathrm{max}$.

Circuit layout

NX-TBX01

Terminal wiring

NX-TBX01

Dimensions

EtherCAT coupler unit NX-ECC202

I/O unit with screwless push-in terminal

12 mm width

I/O unit with MIL connector
1 connector with 20 terminals

24 mm width

1 connector with 40 terminals

2 connectors with 20 terminals

End cover unit NX-END01

Ordering information

EtherCAT coupler unit

Type	Signal type	Specifications	Channels	Max. I/O power supply	Width
EtherCAT communication coupler (firmware version 1.1 or higher)	EtherCAT slave	Up to 63 I/O units Max. 1024 bytes in +1024 bytes out Supports distributed clock	2	10.0 A	46 mm
NX-ECC202					

I/O unit

Digital I/O

Type	Channels, signal type	Performance ${ }^{\prime 1}$, I/O refresh method	Connection type ${ }^{2}$	Width	Model	NPN type ${ }^{\text {³ }}$
DC digital input	4 inputs, 3-wire connection	High-speed synchronous time stamp	Screwless push-in (NX-TBA122)	12 mm	NX-ID3444	NX-ID3344
		High-speed synchronous/free run	Screwless push-in (NX-TBA122)	12 mm	NX-ID3443	NX-ID3343
		Synchronous/free run	Screwless push-in (NX-TBA122)	12 mm	NX-ID3417	NX-ID3317
	8 inputs, 2-wire connection	Synchronous/free run	Screwless push-in (NX-TBA162)	12 mm	NX-ID4442	NX-ID4342
	16 inputs, 1-wire connection	Synchronous/free run	Screwless push-in (NX-TBA162)	12 mm	NX-ID5442	NX-ID5342
		Synchronous/free run	1×20-pin MIL connector	30 mm	NX-ID5142-5	NX-ID5142-5
	32 inputs, 1-wire connection	Synchronous/free run	1×40-pin MIL connector	30 mm	NX-ID6142-5	NX-ID6142-5
AC digital input	4 inputs, 200-240 VAC, $50 / 60 \mathrm{~Hz}$	Free run	Screwless push-in (NX-TBA082)	12 mm	NX-IA3117	
DC digital output	2 outputs $0.5 \mathrm{~A}, 3$-wire connection	High-speed synchronous time stamp	Screwless push-in (NX-TBA082)	12 mm	NX-OD2258	NX-OD2154
	4 outputs $0.5 \mathrm{~A}, 3$-wire connection	High-speed synchronous/free run	Screwless push-in (NX-TBA122)	12 mm	NX-OD3257	NX-OD3153
		Synchronous/free run	Screwless push-in (NX-TBA122)	12 mm	NX-OD3256	NX-OD3121
	8 outputs $0.5 \mathrm{~A}, 2$-wire connection	Synchronous/free run	Screwless push-in (NX-TBA162)	12 mm	NX-OD4256	NX-OD4121
	16 outputs $0.5 \mathrm{~A}, 1$-wire connection	Synchronous/free run	Screwless push-in (NX-TBA162)	12 mm	NX-OD5256	NX-OD5121
		Synchronous/free run	1×20-pin MIL connector	30 mm	NX-OD5256-5	NX-OD5121-5
	32 outputs $0.5 \mathrm{~A}, 1$-wire connection	Synchronous/free run	1×40-pin MIL connector	30 mm	NX-OD6256-5	NX-OD6121-5
Relay digital output	2 outputs, N.O., 2.0 A	Free run	Screwless push-in (NX-TBA082)	12 mm	NX-OC2633	
	2 outputs, N.O. + N.C., 2.0 A	Free run	Screwless push-in (NX-TBA082)	12 mm	NX-OC2733	-
DC Digital I/O	16 inputs + 16 outputs, 1 -wire connection + common	Synchronous/free run	2×20-pin MIL connector	30 mm	NX-MD6256-5	NX-MD6121-5

*1. Digital I/O performance, ON/OFF delay:
High speed PNP/NPN input: $100 \mathrm{~ns} / 100 \mathrm{~ns}$
Standard PNP/NPN input: $0.02 \mathrm{~ms} / 0.4 \mathrm{~ms}$
AC input: $10 \mathrm{~ms} / 40 \mathrm{~ms}$
High speed PNP/NPN output: $300 \mathrm{~ns} / 300 \mathrm{~ns}$
Standard PNP output: $0.5 \mathrm{~ms} / 1.0 \mathrm{~ms}$
Standard NPN output: $0.1 \mathrm{~ms} / 0.8 \mathrm{~ms}$
Relay output: $15 \mathrm{~ms} / 15 \mathrm{~ms}$
*2. Units with Screwless push-in connections are supplied with the appropriate terminal connector. Units with MIL connectors are supplied without matching plugs
*3. Model codes are for PNP type signals (positive switching, OV common). Most models are also available as NPN type (negative switching, 24 V common). Inputs of MIL connector versions can be used as NPN or PNP.

Analog I/O

Type	Signal type	Performance, l/O refresh method	Channels	Connection type ${ }^{\text {41 }}$	Width	Model
Analog input	4 to 20 mA single ended	1/8,000 resolution, $250 \mu \mathrm{~s} /$ channel	2	Screwless push-in (NX-TBA082)	12 mm	NX-AD2203
			4	Screwless push-in (NX-TBA122)	12 mm	NX-AD3203
			8	Screwless push-in (NX-TBA162)	12 mm	NX-AD4203
	4 to 20 mA differential	1/8,000 resolution, $250 \mu \mathrm{~s} /$ channel	2	Screwless push-in (NX-TBA082)	12 mm	NX-AD2204
			4	Screwless push-in (NX-TBA122)	12 mm	NX-AD3204
			8	Screwless push-in (NX-TBA162)	12 mm	NX-AD4204
		1/30,000 resolution, $10 \mu \mathrm{~s} /$ channel Synchronous/free run	2	Screwless push-in (NX-TBA082)	12 mm	NX-AD2208
			4	Screwless push-in (NX-TBA122)	12 mm	NX-AD3208
			8	Screwless push-in (NX-TBA162)	12 mm	NX-AD4208
	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \text { single ended } \end{aligned}$	1/8,000 resolution, $250 \mu \mathrm{~s} /$ channel	2	Screwless push-in (NX-TBA082)	12 mm	NX-AD2603
			4	Screwless push-in (NX-TBA122)	12 mm	NX-AD3603
			8	Screwless push-in (NX-TBA162)	12 mm	NX-AD4603
	$\begin{aligned} & \hline \pm 10 \mathrm{~V} \\ & \text { differential } \end{aligned}$	1/8,000 resolution, $250 \mu \mathrm{~s} /$ channel Free run	2	Screwless push-in (NX-TBA082)	12 mm	NX-AD2604
			4	Screwless push-in (NX-TBA122)	12 mm	NX-AD3604
			8	Screwless push-in (NX-TBA162)	12 mm	NX-AD4604
		1/30,000 resolution, $10 \mu \mathrm{~s} /$ channel Synchronous/free run	2	Screwless push-in (NX-TBA082)	12 mm	NX-AD2608
			4	Screwless push-in (NX-TBA122)	12 mm	NX-AD3608
			8	Screwless push-in (NX-TBA162)	12 mm	NX-AD4608
Analog output	4 to 20 mA	$1 / 8,000$ resolution, $250 \mu \mathrm{~s} /$ channelFree run	2	Screwless push-in (NX-TBA082)	12 mm	NX-DA2203
			4	Screwless push-in (NX-TBA122)	12 mm	NX-DA3203
		1/30,000 resolution, $10 \mu \mathrm{~s} /$ channel Synchronous/free run	2	Screwless push-in (NX-TBA082)	12 mm	NX-DA2205
			4	Screwless push-in (NX-TBA122)	12 mm	NX-DA3205
	$\pm 10 \mathrm{~V}$	1/8,000 resolution, $250 \mu \mathrm{~s} /$ channel Free run	2	Screwless push-in (NX-TBA082)	12 mm	NX-DA2603
			4	Screwless push-in (NX-TBA122)	12 mm	NX-DA3603
		1/30,000 resolution, $10 \mu \mathrm{~s} /$ channel Synchronous/free run	2	Screwless push-in (NX-TBA082)	12 mm	NX-DA2605
			4	Screwless push-in (NX-TBA122)	12 mm	NX-DA3605

[^4]Temperature input

Type	Signal type	Performance, I/O refresh method	Channels	Connection type ${ }^{\text {* }}$	Width	Model
Temperature sensor input	Thermocouple type B/E/J/K/L/N/R/S/T/U/ WRe5-26/PLII	$0.1^{\circ} \mathrm{C}$ resolution, $200 \mathrm{~ms} / \mathrm{unit}$	2	Screwless push-in terminal block(s), with cold junction sensor, calibrated individually at the factory	12 mm	NX-TS2101
		Free run	4		24 mm	NX-TS3101
		$0.01^{\circ} \mathrm{C}$ resolution, $10 \mathrm{~ms} /$ unit Free run	2		12 mm	NX-TS2102
			4		24 mm	NX-TS3102
		$0.001^{\circ} \mathrm{C}$ resolution, $60 \mathrm{~ms} / \mathrm{unit}$ Free run	2		12 mm	NX-TS2104
			4		24 mm	NX-TS3104
	$\begin{aligned} & \hline \text { RTD type } \\ & \text { Pt100 (3wire)/Pt1000/ } \\ & \text { Ni508.4 } \end{aligned}$	$\begin{aligned} & 0.1^{\circ} \mathrm{C} \text { resolution, } 200 \mathrm{~ms} / \text { unit } \\ & \text { Free run } \end{aligned}$	2	Screwless push-in (NX-TBA162)	12 mm	NX-TS2201
			4	Screwless push-in (NX-TBA162 + NX-TBB162) + NX-TBB162)	24 mm	NX-TS3201
		$0.01^{\circ} \mathrm{C}$ resolution, $10 \mathrm{~ms} / \mathrm{unit}$ Free run	2	Screwless push-in (NX-TBA162)	12 mm	NX-TS2202
			4	$\begin{aligned} & \text { Screwless push-in (NX-TBA162 } \\ & + \text { NX-TBB162) } \end{aligned}$	24 mm	NX-TS3202
		$0.001^{\circ} \mathrm{C}$ resolution, $60 \mathrm{~ms} /$ unit Free run	2	Screwless push-in (NX-TBA162)	12 mm	NX-TS2204
			4	$\begin{aligned} & \text { Screwless push-in (NX-TBA162 } \\ & + \text { NX-TBB162) } \\ & \hline \end{aligned}$	24 mm	NX-TS3204

*1. Units with Screwless push-in connections are supplied with the appropriate terminal connector. Units with MIL connectors are supplied without matching plugs.

Position interface

Type	Channels, signal type	Performance, I/O refresh method	Connection type ${ }^{\text {¹ }}$	Width	Model	NPN type ${ }^{\text {² }}$
Encoder input	1 SSI encoder, 2 MHz	Synchronous/free run	Screwless push-in (NX-TBA122)	12 mm	NX-ECS112	
	2 SSI encoders, 2 MHz	Synchronous/free run	Screwless push-in (NX-TBA122)	12 mm	NX-ECS212	-
	1 incremental encoder line driver $4 \mathrm{MHz}+3$ digital inputs ($1 \mu \mathrm{~s}$)	Synchronous/free run	$\begin{aligned} & \begin{array}{l} \text { Screwless push-in (NX-TBA122 } \\ + \\ + \text { NX-TBB122) } \end{array} \\ & \hline \end{aligned}$	24 mm	NX-EC0142	NX-EC0132
	1 incremental encoder open collector $500 \mathrm{kHz}+3$ digital inputs ($1 \mu \mathrm{~s}$)	Synchronous/free run	Screwless push-in (NX-TBA162)	12 mm	NX-EC0122	NX-EC0112
	2 incremental encoders open collector 500 kHz	Synchronous/free run	Screwless push-in (NX-TBA122)	12 mm	NX-EC0222	NX-EC0212
Pulse output	1 Pulse up/down or pulse/direction open collector $500 \mathrm{kHz}+2$ digital inputs +1 digital output ($1 \mu \mathrm{~s}$)	Synchronous	Screwless push-in (NX-TBA162)	12 mm	NX-PG0122	NX-PG0112

${ }^{*}$. Units with Screwless push-in connections are supplied with the appropriate terminal connector. Units with MIL connectors are supplied without matching plugs. *2. Model codes are for PNP type signals (positive switching, OV common). Most models are also available as NPN type (negative switching, 24V common). Inputs of MIL connector versions can be used as NPN or PNP

Power/System unit

Type	Description	Connection type"1	Width	Model
NX bus power supply unit	24 VDC input, non-isolated	Screwless push-in (NX-TBC082)	12 mm	NX-PD1000
I/O power feed unit	For separation of groups, up to 4 A	Screwless push-in (NX-TBA082)	12 mm	NX-PF0630
	For separation of groups, up to 10 A	Screwless push-in (NX-TBA082)	12 mm	NX-PF0730
	$16 \times$ IOV	Screwless push-in (NX-TBA162)	12 mm	NX-PC0020
	$16 \times$ IOG	Screwless push-in (NX-TBA162)	12 mm	NX-PC0010
	$8 \times$ IOV $+8 \times$ IOG	Screwless push-in (NX-TBA162)	12 mm	NX-PC0030
Shield connection unit	Grounding terminal, 16 points	Screwless push-in (NX-TBC162)	12 mm	NX-TBX01

${ }^{* 1}$. Units with Screwless push-in connections are supplied with the appropriate terminal connector.

Accessories

Type	Description	Connection type	Width	Model
End cover	Included with communication coupler	-	12 mm	NX-END01
Terminal block (replacement front connector)	With 8 wiring terminals (A + B)	Screwless push-in	12 mm	NX-TBA082
	With 8 wiring terminals (A + B with FG)	Screwless push-in	12 mm	NX-TBC082
	With 12 wiring terminals (A + B)	Screwless push-in	12 mm	NX-TBA122
	With 12 wiring terminals (C + D)	Screwless push-in	12 mm	NX-TBB122
	With 16 wiring terminals (A + B)	Screwless push-in	12 mm	NX-TBA162
	With 16 wiring terminals (C + D)	Screwless push-in	12 mm	NX-TBB162
	With 16 wiring terminals (A + B with FG)	Screwless push-in	12 mm	NX-TBC162
DIN rail insulation spacers	Set of 3 pcs	-	NX-AUX01	
Terminal block coding pins	For 10 units (Terminal block: 30 pins, unit: 30 pins)	-	NX-AUXO2	
End plate	To secure the units on the DIN track	-	PFP-M	

Machine controller

Name	CPU unit	Model
NJ-series (firmware version 1.09 or higher $^{* 1}$)		NJ501- \square
	Power supply unit	NJ301- \square

*1. Please contact your OMRON representative for compatibility between the NJ-series firmware version 1.08 or lower and NX I/O units.

Computer software

Specifications	Model
Sysmac Studio version 1.10 or higher ${ }^{* 1}$	SYSMAC-SE2

*1. Please contact your OMRON representative for compatibility between the Sysmac Studio version 1.09 or lower and NX I/O units.

> ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
> To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

Cat.No.SysCat_I182E-EN-03 In the interest of product improvement, specifications are subject to change without notice.

GX- \square

GX series I/O

High-speed remote I/O terminals
The GX-Series I/O units provide an extensive line-up of digital I/O terminals, analogue I/O terminals and encoder input terminals.

- Easy set-up: automatic and manual address setting
- Digital I/O terminals with high-speed input functionality, ON/OFF delay of $200 \mu \mathrm{~s}$ max.
- Digital input filters prevent malfunction when status is unstable due to chattering or noise
- Removable I/O terminal for easy maintenance
- Expandable digital I/Os

System configuration

Specifications

General specifications

GX-Series	Specification
Unit power supply voltage	$24 \mathrm{VDC}-15 \%$ to +10\% (20.4 to 26.4 VDC)
I/O power supply voltage	24 VDC -15\% to +10\% (20.4 to 26.4 VDC)
Noise resistance	Conforms to IEC 61000-4-4, 2 kV (power line)
Vibration resistance	Malfunction 10 to 60 Hz with amplitude of $0.7 \mathrm{~mm}, 60$ to 150 Hz and $50 \mathrm{~m} / \mathrm{s}^{2}$ in X, Y and Z directions for 80 minutes <Relay Output Unit GX-OC1601 only> 10 to 55 Hz with double-amplitude of 0.7 mm
Impact resistance	$150 \mathrm{~m} / \mathrm{s}^{2}$ with amplitude of 0.7 mm <Relay Output Unit GX-OC1601 only> $100 \mathrm{~m} / \mathrm{s}^{2}$ (3 times each in 6 directions on 3 axes)
Dielectric strength	600 VAC (between isolated circuits)
Isolation resistance	$20 \mathrm{M} \Omega$ or more (between isolated circuits)
Ambient operating temperature	-10 to 550
Operating humidity	25\% to 85\% (with no condensation)
Operating atmosphere	No corrosive gases
Storage temperature	-25 to $65^{\circ} \mathrm{C}$
Storage humidity	25\% to 85\% (with no condensation)
Terminal block screws tightening torque*1	M3 wiring screws: 0.5 Nm M3 terminal block mounting screws: 0.5 Nm
Mounting method	35-mm DIN track mounting

*1 Applicable only to 2-tier terminal block and 3-tier terminal block type slaves.

EtherCAT communications specifications

Item	Specification
Communication protocol	Dedicated protocol for EtherCAT
Modulation	Base band
Baud rate	100 Mbps
Physical layer	100BASE-TX (IEEE802.3)
Connectors	RJ45 shielded connector $\times 2$ CN IN: EtherCAT input CN OUT: EtherCAT output
Communications media	Category 5 or higher (cable with double, aluminum tape and braided shielding is recommended.)
Communications distance	Distance between nodes (slaves): 100 m max.
Noise resistance	Conforms to IEC 61000-4-4, 1 kV or higher
Node address setting method	Set with decimal rotary switch or Sysmac Studio
Node address range	1 to 99: Set with rotary switch 1 to 65535: Set with Sysmac Studio
LED display	PWR $\times 1$ L/A IN (Link/Activity IN) $\times 1$ L/A OUT (Link/Activity OUT) $\times 1$ RUN $\times 1$ ERR $\times 1$
Process data	Fixed PDO mapping
PDO size/mode	2 bits to 256 bytes
Mailbox	Emergency messages, SDO requests, SDO responses and SDO information
SYNCHRONIZATION mode	Digital I/O slave unit and analog I/O slave unit: Free Run mode (asynchronous) Encoder input slave unit: DC mode 1

Digital I/O

16-point input (1-wire connection)

Item	Specification	
	GX-ID1611	GX-ID1621
Input capacity	16 points	
Internal I/O common	NPN	PNP
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	6.0 mA max./input (at 24 VDC) 3.0 mA max./input (at 17 VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max .	
Input filter value	Without filter, $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}, 32 \mathrm{~ms}$	(Default setting: 1 ms)
Number of circuits per common	16 points/common	
Input indicators	LED display (yellow)	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Unit power supply current consumption	90 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
I/O power supply current consumption	5 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
Weight	180 g max .	
Expansion functions	Enabled	
Short-circuit protection function	No	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488)..
16-point output (1-wire connection)

Item	Specification	
	GX-OD1611	GX-OD1621
Output capacity	16 points	
Rated current (ON current)	0.5 A/output, 4.0 A/common	
Internal I/O common	NPN	PNP
Residual voltage	1.2 V max. (0.5 VDC, between each output terminal and the G terminal)	1.2 V max. (0.5 VDC, between each output terminal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max.	
OFF delay	1.5 ms max .	
Number of circuits per common	16 points/common	
Output indicators	LED display (yellow)	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Unit power supply current consumption	90 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
I/O power supply current consumption	5 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
Weight	180 g max.	
Expansion functions	Enabled	
Output handling for communications errors	Select either hold or clear	
Short-circuit protection function	No	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).
16 relay outputs

Item	Specification
	GX-OC1601
Output capacity	16 points
Mounted relays	NY-5W-K-IE (Fujitsu Component) (See Note)
Rated load	Resistance load 250 VAC, 2 A/output, common 8 A 30 VDC, 2 A/output, common 8 A
Rated ON current	3 A/output
Maximum contact voltage	250 VAC, 125 VDC
Maximum contact current	3 A/output
Maximum switching capacity	750 VAAC, 90 WDC
Minimum applicable load (reference value)	5 VDC, 1 mA
Mechanical service life	20,000,000 operations min.
Electrical service life	100,000 operations min.
Number of circuits per common	16 points/common
Output indicators	LED display (yellow)
Isolation method	Relay isolation
1/O power supply method	The relay drive power is supplied from the unit power supply.
Unit power supply current consumption	210 mA max. (for 20.4 to 26.4 VDC power supply voltage)
Weight	290 g max.
Expansion functions	Enabled

Item	
	Select either hold or clear
Short-circuit protection function	No

Note: For the specification of individual relay, refer to the datasheet of published by manufacturers.
8 -point input and 8 -point output (1-wire connection)

Item	Specification	
	GX-MD1611	GX-MD1621
General Specifications		
Internal I/O common	NPN	PNP
I/O indicators	LED display (yellow)	
Unit power supply current consumption	80 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
Weight	190 g max.	
Expansion functions	No	
Short-circuit protective function	No	
Input Section		
Input capacity	8 points	
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal) 5 VDC max. (between each input terminal and the G terminal)	
OFF current		
Input current	6.0 mA max./input (at 24 VDC) 3.0 mA max./input (at 17 VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max.	
Input filter value	Without filter, $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}, 32 \mathrm{~ms}$ (Default setting: 1 ms)	
Number of circuits per common	8 points/common	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
I/O power supply current consumption	5 mA max . (for 20.4 to 26.4 VDC power supply voltage)	
Output Section		
Output capacity	8 points	
Rated output current	0.5 A/output, 2.0 A/common	
Residual voltage	1.2 V max. (0.5 VDC, between each output terminal and the G terminal)	1.2 V max. (0.5 VDC, between each output terminal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max .	
OFF delay	1.5 ms max.	
Number of circuits per common	8 points/common	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
I/O power supply current consumption	5 mA max . (for 20.4 to 26.4 VDC power supply voltage)	
Output handling for communications errors	Select either hold or clear	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).
16-point input (3-wire connection)

Item	Specification	
	GX-ID1612	GX-ID1622
Input capacity	16 points	
Internal I/O common	NPN	PNP
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	6.0 mA max./input (at 24 VDC) 3.0 mA max./input (at 17 VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max .	
Input filter value	Without filter, $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}, 32 \mathrm{~ms}$	(Default setting: 1 ms)
Number of circuits per common	8 points/common	
Input indicators	LED display (yellow)	
Isolation method	Photocoupler isolation	
1/O power supply method	Supply by I/O power supply	
Input device supply current	$100 \mathrm{~mA} /$ point	
Unit power supply current consumption	90 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
I/O power supply current consumption	5 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
Weight	370 g max .	
Expansion functions	No	
Short-circuit protection function	No	

16-point output (3-wire connection)

Item	Specification	
	GX-OD1612	GX-OD1622
Output capacity	16 points	
Rated current (ON current)	0.5 A/output, 4.0 A/common	
Internal I/O common	NPN	PNP
Residual voltage	1.2 V max. (0.5 VDC, between each output terminal and the G terminal)	1.2 V max. (0.5 VDC , between each output terminal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max.	
OFF delay	1.5 ms max .	
Number of circuits per common	8 points/common	
Output indicators	LED display (yellow)	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Output device supply current	$100 \mathrm{~mA} / \mathrm{point}$	
Unit power supply current consumption	90 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
I/O power supply current consumption	5 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
Weight	370 g max .	
Expansion functions	No	
Output handling for communications errors	Select either hold or clear	
Short-circuit protection function	No	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).
8 -point input and 8 -point output (3-wire connection)

Item	Specification	
	GX-MD1612	GX-MD1622
General Specifications		
Internal I/O common	NPN	PNP
I/O indicators	LED display (yellow)	
Unit power supply current consumption	90 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
Weight	$370 \mathrm{~g} \mathrm{max}$.	
Expansion functions	No	
Short-circuit protective function	No	
Input Section		
Input capacity	8 points	
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	6.0 mA max./input (at 24-VDC) 3.0 mA max./input (at 17-VDC)	
ON delay	0.1 ms max.	
OFF delay	0.2 ms max.	
Input filter value	Without filter, $0.5 \mathrm{~ms}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 4 \mathrm{~ms}, 8 \mathrm{~ms}, 16 \mathrm{~ms}, 32 \mathrm{~ms}$ (Default setting: 1 ms)	
Number of circuits per common	8 points/common	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Input device supply current	$100 \mathrm{~mA} /$ point	
I/O power supply current consumption	5 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
Output Section		
Output capacity	8 points	
Rated output current	0.5 A/output, 2.0 A/common	
Residual voltage	1.2 V max. (0.5 VDC, between each output terminal and the G terminal)	1.2 V max. (0.5 VDC, between each output terminal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max .	
OFF delay	1.5 ms max.	
Number of circuits per common	8 points/common	
Isolation method	Photocoupler isolation	
I/O power supply method	Supply by I/O power supply	
Output device supply current	$100 \mathrm{~mA} /$ point	
I/O power supply current consumption	5 mA max . (for 20.4 to 26.4 VDC power supply voltage)	
Output handling for communications errors	Select either hold or clear	

Note: For the I/O power supply current value to V and G terminals, refer to GX Series Operation Manual (Cat. No. W488).

Analog I/O

Analogue input

Item	Specification	
	GX-AD0471	
	Voltage input	Current input
Input capacity	4 points (possible to set number of enabled channels)	
Input range	$\begin{aligned} & 0 \text { to } 5 \mathrm{~V} \\ & 1 \text { to } 5 \mathrm{~V} \\ & 0 \text { to } 10 \mathrm{~V} \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$	4 to 20 mA
Input range setting method	Input range switch: Common to input $\mathrm{CH} 1 / \mathrm{CH} 2$, common to input $\mathrm{CH} 3 / \mathrm{CH} 4$ SDO communication: Possible to set input CH 1 to CH 4 individually	
Maximum signal input	$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
Input Impedance	$1 \mathrm{M} \Omega$ min.	Approx. 250Ω
Resolution	1/8000 (full scale)	
Overall accuracy $25^{\circ} \mathrm{C}$ -10 to $55^{\circ} \mathrm{C}$	$\pm 0.3 \%$ FS	$\pm 0.4 \%$ FS
	$\pm 0.6 \%$ FS	$\pm 0.8 \%$ FS
Analog conversion cycle	$500 \mu \mathrm{~s} / \mathrm{input}$ when 4 points are used: 2 ms max .	
A/D converted data	Other than $\pm 10 \mathrm{~V}: 0000$ to 1 F40 Hex full scale (0 to 8000) ± 10 V: F060 to OFAO Hex full scale (-4000 to +4000) A/D conversion range: $\pm 5 \%$ FS of the above data ranges.	
Isolation method	Photocoupler isolation (between input and communications lines) No isolation between input signals	
Unit power supply current consumption	120 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
Weight	180 g max.	
Accessories	Four short-circuit metal fixtures (for current input) ${ }^{-1}$	

'1 Short-circuit metal fixtures are used for current input only, but store in a safe place when using for voltage inputs as well.
Analogue output

Item	Specification	
	GX-DA0271	
	Voltage output	Current output
Output capacity	2 points (possible to set number of enabled channels)	
Output range	$\begin{aligned} & 0 \text { to } 5 \mathrm{~V} \\ & 1 \text { to } 5 \mathrm{~V} \\ & 0 \text { to } 10 \mathrm{~V} \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$	4 to 20 mA
Output range setting method	Output range switch, SDO communication: Possible to set outputs CH 1 and CH 2 separately	
External output allowable load resistance	$5 \mathrm{~K} \Omega \mathrm{~min}$.	600Ω max.
Resolution	1/8000 (full scale)	
Overall accuracy	$\pm 0.4 \%$ FS	
	$\pm 0.8 \%$ FS	
Analog conversion cycle	$500 \mu \mathrm{~s} / \mathrm{input}$ when 2 points are used: 1 ms max.	
D/A converted data	Other than $\pm 10 \mathrm{~V}$: 0000 to 1 F 40 Hex full scale (0 to 8000) ± 10 V: F060 to OFAO Hex full scale (-4000 to +4000) D/A conversion range: $\pm 5 \% \mathrm{FS}$ of the above data ranges.	
Isolation method	Photocoupler isolation (between output and communications lines) No isolation between output signals	
Unit power supply current consumption	150 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
Weight	190 g max .	

Encoder input

Open collector input

Item	Specification			
	GX-EC0211			
Terminal specifications				
Counter point	2 points			
Input signal	Counter phase A Counter phase B Counter phase Z Latch input (A/B) Counter reset input			
Counter enabled status display	LED display (green)			
Input indicators	LED display (yellow)			
Unit power supply current consumption	130 mA max. (for 20.4 to 26.4 VDC power supply voltage)			
Weight	$390 \mathrm{~g} \mathrm{max}$.			
Pulse input specifications				
	Counter phase A/B		Counter phase Z	
Input voltage	$\begin{aligned} & 20.4 \text { to } 26.4 \text { VDC } \\ & (24 \mathrm{VDC}-15 \text { to }+10 \%) \end{aligned}$	$\begin{aligned} & 4.5 \text { to } 5.5 \mathrm{VDC} \\ & (5 \mathrm{VDC} \pm 5 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 20.4 \text { to } 26.4 \text { VDC } \\ & (24 \text { VDC }-15 \text { to }+10 \%) \end{aligned}$	$\begin{aligned} & 4.5 \text { to } 5.5 \text { VDC } \\ & \text { (5 VDC } \pm 5 \% \text {) } \\ & \hline \end{aligned}$
Input current	8.4 mA (at 24 VDC$)$	8.6 mA (at 5 VDC$)$	8.4 mA (at 24 VDC$)$	8.6 mA (at 5 VDC$)$
ON voltage	19.6 V min.	4.5 V min.	18.6 V min.	4.5 V min.
OFF voltage	4 V max.	1.5 V max.	4 V max.	1.5 V max.

Item Input restriction resistance	Specification	
	GX-EC0211	
	$2.7 \mathrm{~K} \Omega$ 430Ω	
Maximum response frequency	Single phase 500 kHz (phase difference Multiplication $\times 4,125 \mathrm{kHz}$)	125 kHz
Filter switching	NA	NA
Latch/reset input specifications		
	Latch input (A/B)	Reset input
Internal I/O common	NPN	
Input voltage	20.4 to 26.4 VDC (24 VDC - 15 to +10\%)	20.4 to 26.4 VDC (24 VDC -15 to +10\%)
Input impedance	$4.0 \mathrm{~K} \Omega$	$3.3 \mathrm{~K} \Omega$
Input current	5.5 mA (at 24 VDC)	7 mA (at 24 VDC)
ON voltage/ON current	17.4 VDC min./3 mA min.	14.4 VDC min./3 mA min.
OFF voltage/OFF current	5 VDC max./1 mA max.	5 VDC max./1 mA max.
ON response time	$3 \mu \mathrm{~s}$ max.	$15 \mu \mathrm{~s}$ max.
OFF response time	$3 \mu \mathrm{~s}$ max.	$90 \mu \mathrm{~s}$ max.

Line driver input

Item	Specification	
	GX-EC0241	
Terminal specifications		
Counter point	2 points	
Input signal	Counter phase A Counter phase B Counter phase Z Latch input (A/B) Counter reset input	
Counter enabled status display	LED display (green)	
Input indicators	LED display (yellow)	
Unit power supply current consumption	100 mA max. (for 20.4 to 26.4 VDC power supply voltage)	
Weight	390 g max .	
Pulse input specifications		
	Counter phase A/B	Cou
Input voltage	EIA standard RS-422-A line driver level	
Input impedance	$120 \Omega \pm 5 \%$	
gH level input voltage	0.1 V	
gL level input voltage	-0.1 V	
Hysteresis voltage	60 mV	
Maximum response frequency	Single phase 4 MHz (phase difference Multiplication $\times 4,1 \mathrm{MHz}$)	1 MHz
Filter switching	NA	
Latch/reset input specifications		
	Latch input (A/B)	
Internal I/O common	PNP	
Input voltage	20.4 to 26.4 VDC (24 VDC -15 to +10\%)	20.4 to 26.4 VDC (24 VDC
Input impedance	$4.0 \mathrm{~K} \Omega$	$3.3 \mathrm{~K} \Omega$
Input current	5.5 mA (at 24 VDC)	7 mA (at 24 VDC)
ON voltage/ON current	17.4 VDC min./3 mA min.	14.4 VDC min./3 mA min.
OFF voltage/OFF current	5 VDC max./1 mA max.	5 VDC max./1 mA max.
ON response time	$3 \mu \mathrm{~s} \mathrm{max}$.	$15 \mu \mathrm{~s}$ max.
OFF response time	$3 \mu \mathrm{~s} \mathrm{max}$.	90μ s max.

Expansion units

8-point input

Item	Specification	
	XWT-ID08	XWT-ID08-1
Internal I/O common	NPN	PNP
I/O capacity	8 inputs	
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	At 24 VDC: 6.0 mA max./input At 17 VDC: 3.0 mA max./input	
ON delay	1.5 ms max.	
OFF delay	1.5 ms max .	
Number of circuits per common	8 inputs/common	
Communications power supply current consumption	5 mA	
Weight	80 g max.	

16-point input

Item	Specification	
	XWT-ID16	XWT-ID16-1
Internal I/O common	NPN	PNP
I/O capacity	16 inputs	
ON voltage	15 VDC min. (between each input terminal and the V terminal)	15 VDC min. (between each input terminal and the G terminal)
OFF voltage	5 VDC max. (between each input terminal and the V terminal)	5 VDC max. (between each input terminal and the G terminal)
OFF current	1.0 mA max.	
Input current	At 24 VDC: 6.0 mA max./input At 17 VDC: 3.0 mA max. $/$ input	
ON delay	1.5 ms max .	
OFF delay	1.5 ms max .	
Number of circuits per common	16 inputs/common	
Communications power supply current consumption	10 mA	
Weight	120 g max .	

8-point output

Item	Specification	
	XWT-OD08	XWT-OD08-1
Internal I/O common	NPN	PNP
1/O capacity	8 outputs	
Rated output current	0.5 A/output, 2.0 A/common	
Residual voltage	1.2 V max. (0.5 A DC, between each output terminal and the G terminal)	1.2 V max. (0.5 A DC, between each output terminal and the V terminal)
Leakage current	0.1 mA max.	
ON delay	0.5 ms max.	
OFF delay	1.5 ms max.	
Number of circuits per common	8 outputs/common	
Communications power supply current consumption	5 mA	
Weight	80 g max.	

16-point output-point

Item	Specification	
	XWT-OD16	XWT-OD16-1
Internal I/O common	NPN	PNP
I/O capacity	16 outputs	
Rated output current	0.5 A/output, 4.0 A/common	
Residual voltage	1.2 V max. (0.5 A DC, between each output terminal and the G terminal)	
Leakage current	0.1 mA max.	
ON delay	0.5 ms max.	
OFF delay	1.5 ms max .	
Number of circuits per common	16 outputs/common	
Communications power supply current consumption	10 mA	
Weight	120 g max.	

Dimensions

Digital I/O

GX-ID1611/ID1621, GX-OD1611/OD1621

GX-OC1601

GX-MD1611/MD1621

GX-ID1612/ID1622, GX-OD1612/OD1622, GX-MD1612/MD1622

Analog I/O

GX-AD0471/DA0271

Encoder input

GX-EC0211/EC0241

Expansion units

XWT-ID08/ID08-1, XWT-OD08/OD08-1

XWT-ID16/ID16-1, XWT-OD16/OD16-1

Ordering information

Digital I/O

Description	Specification	Model
16-point NPN input	24 VDC, $6 \mathrm{~mA}, 1$-wire connection, expandable with one XWT unit	GX-ID1611
16-point PNP input	$24 \mathrm{VDC}, 6 \mathrm{~mA}, 1$-wire connection, expandable with one XWT unit	GX-ID1621
16-point NPN output	24 VDC, $500 \mathrm{~mA}, 1$-wire connection, expandable with one XWT unit	GX-OD1611
16-point PNP output	24 VDC, $500 \mathrm{~mA}, 1$-wire connection, expandable with one XWT unit	GX-OD1621
8-point input and 8-point output, NPN	24 VDC, 6 mA input, 500 mA output, 1 -wire connection	GX-MD1611
8-point input and 8-point output, PNP	$24 \mathrm{VDC}$,6 mA input, 500 mA output, 1 -wire connection	GX-MD1621
16-point NPN input	24 VDC, $6 \mathrm{~mA}, 3$-wire connection	GX-ID1612
16-point PNP input	24 VDC, $6 \mathrm{~mA}, 3$-wire connection	GX-ID1622
16-point NPN output	24 VDC, $500 \mathrm{~mA}, 3$-wire connection	GX-OD1612
16-point PNP output	24 VDC, $500 \mathrm{~mA}, 3$-wire connection	GX-OD1622
8-point input and 8-point output, NPN	24 VDC, 6 mA input, 500 mA output, 3-wire connection	GX-MD1612
8-point input and 8-point output, PNP	24 VDC, 6 mA input, 500 mA output, 3-wire connection	GX-MD1622
16-point relay output	250 VAC, $2 \mathrm{~A}, 1$-wire connection, expandable with one XWT unit	GX-OC1601

Analog I/O

Description	Specification	Model
4-Channel analogue input, current/voltage	$10 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 4$ to 20 mA	GX-AD0471
2-Channel analogue output, current/voltage	$10 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 4$ to 20 mA	GX-DA0271

Encoder input

Description	Specification	Model
2 encoder open collector inputs	500 kHz Open collector input	GX-EC0211
2 encoder line-driver inputs	4 MHz Line driver input	GX-EC0241

Expansion units

Description	Specification	Model
8 -point NPN input expansion unit	24 VDC, 6 mA	XWT-ID08
8 -point PNP input expansion unit	$24 \mathrm{VDC}, 6 \mathrm{~mA}$	XWT-ID08-1
8 -point NPN output expansion unit	$24 \mathrm{VDC}, 500 \mathrm{~mA}$	XWT-OD08
8-point PNP output expansion unit	$24 \mathrm{VDC}, 500 \mathrm{~mA}$	XWT-OD08-1
16-point NPN input expansion unit	$24 \mathrm{VDC}, 6 \mathrm{~mA}$	XWT-ID16
16-point PNP input expansion unit	$24 \mathrm{VDC}, 6 \mathrm{~mA}$	XWT-ID16-1
16-point NPN output expansion unit	$24 \mathrm{VDC}, 500 \mathrm{~mA}$	XWT-OD16
16-point PNP output expansion unit	$24 \mathrm{VDC}, 500 \mathrm{~mA}$	XWT-OD16-1

NX-S \square

NX integrated safety

Integrated safety into machine automation

- The safety controller meets Category 4, PLe according to the ISO 13849-1 and SIL3 according to the IEC 61508
- Flexible system lets you freely mix safety controller and safety I/O units with standard NX I/O
- High connectivity I/O units for direct connection to a variety of devices
- Scalable CPUs for 32 or 128 safety connections
- Up to 8 safety input points per unit
- Safety function blocks conforming with IEC 61131-3 standard programming

- PLCopen function blocks for safety
- Integration in one software, Sysmac Studio

System configuration

Specifications
Regulations and standards

Certification body	Standards	
TÜV Rheinland"1	EN ISO 13849-1: 2008 + AC: 2009	EN 61000-6-2: 2005
	EN ISO 13849-2: 2012	EN 61000-6-4: 2007
	IEC 61508 parts 1-7: 2010	NFPA 79: 2012
	ANSI RIA 15.06-1999	
	EN 62061: 2005	ANSI B11.19-2010
	EN 61131-2: 2007	UL1998
	EN ISO 13850: 2008	IEC 61326-3-1: 2008
EN 60204-1: 2006 + A1: 2009 + AC: 2010		
	CULus: Listed (UL508) and ANSI/ISA 12.12.01	

*1. Certification was received for applications in which OMRON FSoE devices are connected to each other.
The NX-series Safety Control Units allow you to build a safety control system that meets the following standards.

- Requirements for SIL 3 (Safety Integrity Level 3) in IEC 61508, EN 62061, Safety Standard for Safety Instrumented Systems (Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems)
- Requirements for PLe (Performance Level e) and for safety category 4 in EN ISO13849-1

The NX-series Safety Control Units are also registered for C-Tick and KC compliance.

General specifications

Item		Specifications
Enclosure		Mounted in a panel
Grounding method		Ground to 100Ω or less
Operating environment	Ambient operating temperature	0 to $55^{\circ} \mathrm{C}$
	Ambient operating humidity	10\% to 95\% (with no condensation or icing)
	Atmosphere	No corrosive gases
	Ambient storage temperature	-25 to $70^{\circ} \mathrm{C}$ (with no condensation or icing)
	Altitude	2,000 m max.
	Pollution degree	2 or less: Conforms to JIS B3502 and IEC 61131-2
	Noise immunity	Compliant with IEC 61131-2 2 kV on power supply line (compliant with IEC 61000-4-4)
	Insulation class	Class III (SELV)
	Overvoltage category	Category II: Conforms to JIS B3502 and IEC 61131-2
	EMC immunity level	Zone B
	Vibration resistance	Compliant with IEC 60068-2-6 5 to $8.4 \mathrm{~Hz}, 3.5-\mathrm{mm}$ amplitude, 8.4 to 150 Hz , acceleration: $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for 100 minutes each in X, Y and Z directions (time coefficient: 10 minutes x coefficient factor $10=$ total time 100 min .)
	Shock resistance	Compliant with IEC 60068-2-27 $147 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in X, Y and Z directions
	Insulation resistance	$20 \mathrm{M} \Omega$ between isolated circuits (at 100 VDC)
	Dielectric strength	510 VAC for 1 min between isolated circuits, leakage current: 5 mA max.
Installation method		DIN track (IEC 60715 TH35-7.5/TH35-15)
Applicable standards		EN ISO 13849-1, 13849-2: 2008 PLe/Safety Category 4 IEC 61508: 2010 SIL 3, EN 62061: 2005 SIL CL3 UL 1988 cULus: listed (UL508), ANSI/ISA 12.12.01 EC: EN 61131-2, C-Tick, KC: KC Registration

Nomenclature

Safety controller unit

Symbol	Name	Function
A	Marker installation location	These are where markers are attached. OMRON markers are attached when the unit is shipped. You can also attach commercially available markers.
B	NX bus connector	This is the NX-series bus connector. It is used to connect an NX-series safety I/O unit or other NX unit.
C	Unit hookup guide	This guide is used to connect the unit to another unit.
D	DIN track mounting hooks	These hooks are used for installation on a DIN track.
E	Unit pull out tabs	Place your fingers on these tabs to pull out the unit.
F	Indicators	The indicators show the current operating status of the NX unit and signal I/O status. The number of indicators depend on the NX unit.
G	Unit specifications	The specifications of the NX unit are given here.

Safety controller unit

Item	Specifications	
Model	NX-SL3300	NX-SL3500
Name	Safety CPU unit	
Maximum number of safety I/O points	256 points	1024 points
Program capacity	512 KB	2048 KB
Number of safety master connections	32	128
External connection terminals	None	
Unit power consumption	0.90 W max.	
I/O power supply system	Not supplied	
I/O current consumption	No consumption	
Current capacity of I/O power supply terminal	No I/O power supply terminals	
I/O refreshing method	Free-run refreshing	
Dimensions $(W \times \mathrm{H} \times \mathrm{D})$	$30 \times 100 \times 71$	
Weight	75 g max.	

Safety I/O unit

Safety input unit

Item	Specifications	
Model	NX-SIH400	NX-SID800
Name	Advanced safety input unit	Safety input unit
Number of safety inputs	4 points	8 points
Number of test outputs	2 points	
Internal I/O common	Sinking (PNP)	
Rated input voltage	24 VDC	
OMRON special safety input devices	Can be connected	Cannot be connected
Number of safety slave connections	1 边	
Safety input current	4.5 mA	3.0 mA
Safety input ON voltage	11 VDC min.	15 VDC min.
Safety input OFF voltage/OFF current	5 VDC max., 1 mA max.	
Test output type	Sourcing outputs (PNP)	
Rated current of test outputs	25 mA max.	50 mA max.
Residual ON voltage of test outputs	1.2 V max.	
Leakage current of test outputs	0.1 mA max.	
Dielectric strength	510 VAC for 1 min between isolated circuits, leakage current: 5 mA max.	
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)	
Isolation method	Photocoupler isolation	
Unit power consumption	0.70 W max.	0.75 W max.
I/O power supply system	Power supplied through the NX bus	
I/O current consumption	20 mA max.	
Current capacity of I/O power supply terminal	No applicable terminals	
l/O refreshing method	Free-run refreshing	
Terminal block type	Screwless push-in terminals 8 terminals ($\mathrm{A}+\mathrm{B}$)	Screwless push-in terminals 16 terminals ($\mathrm{A}+\mathrm{B}$)
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)	$12 \times 100 \times 71$	
Weight	70 g max.	
Maximum cable length	Devices with mechanical contacts: 400 m , other devices: 100 m	
Protective functions	Overvoltage protection circuit and ground fault detection (test outputs)	

Circuit layout

Terminal block

Terminal wiring

NX-SIH400

NX-SID800

Safety output unit

Item	Specifications	
Model	NX-SOH200	NX-SOD400
Name	High-current safety output unit	Safety output unit
Number of safety outputs	2 points	4 points
Internal I/O common	Sourcing outputs (PNP)	
Maximum load current	$2.0 \mathrm{~A} /$ point, $4.0 \mathrm{~A} /$ unit at $40^{\circ} \mathrm{C}, 2.5 \mathrm{~A} /$ unit at $55^{\circ} \mathrm{C}$ The maximum load current depends on the installation orientation and ambient temperature.	0.5 A/point and 2.0 A/unit
Rated voltage	24 VDC	
Number of safety slave connections	1	
Safety output ON residual voltage	1.2 V max.	
Safety output OFF residual voltage	2 V max.	
Safety output leakage current	0.1 mA max.	
Dielectric strength	510 VAC for 1 min between isolated circuits, leakage current: 5 mA max.	
Insulation resistance	$20 \mathrm{M} \Omega$ min. between isolated circuits (at 100 VDC)	
Isolation method	Photocoupler isolation	
Unit power consumption	0.70 W max.	0.75 W max.
I/O power supply system	Power supplied through the NX bus	
I/O current consumption	40 mA max.	60 mA max.
Current capacity of I/O power supply terminal	IOG: 2 A max./terminal	IOG (A3 and B3): 2 A max./terminal, IOG (A7 and B7): 0.5 A max./terminal
I/O refreshing method	Free-run refreshing	
Terminal block type	Screwless push-in terminals 8 terminals ($\mathrm{A}+\mathrm{B}$)	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$12 \times 100 \times 71$	
Weight	65 g max.	
Maximum cable length	100 m	
Protective functions	Overvoltage protection circuit and ground fault detection	

Circuit layout

NX-SOD400

Terminal wiring

NX-SOH200

NX-SOD400

Dimensions

EtherCAT coupler unit
NX-ECC202

Safety controller unit

NX-SL3300/SL3500

Safety I/O unit
12 mm width

End cover unit (included with the EtherCAT coupler unit) NX-END01

Ordering information

EtherCAT coupler unit

Type	Signal type	Specifications	Channels	Max. I/O power supply	Width	Model
EtherCAT communication coupler (firmware version 1.1 or higher)	EtherCAT slave	Up to 63 I/O units Max. 1024 bytes in + 1024 bytes out Supports distributed clock	2	10.0 A	46 mm	NX-ECC202

Safety controller unit

Type	Safety master connections	Safety I/O points	Program capacity	Width	Model
Safety CPU	32	256 points max.	512 KB	30 mm	NX-SL3300
	128	1024 points max.	2048 KB	30 mm	NX-SL3500

Safety I/O unit

Safety input unit

Type	Signal type	Safety slave connections	Safety inputs	Test outputs	Width	Model
Safety input	PNP type	1	4 points	2 points	12 mm	NX-SIH400
			8 points	2 points	12 mm	NX-SID800

Safety output unit

Type	Signal type	Safety slave connections	Safety outputs	Width	Model
Safety output	PNP type	1	2 points	12 mm	NX-SOH200
		4 points	12 mm	NX-SOD400	

System unit

Type	Specifications	Width	Model
End cover	Included with communication coupler	12 mm	NX-END01

Accessories

Name	Specifications	Model
Terminal block coding pins	For 10 units (Terminal block: 30 pins, unit: 30 pins)	NX-AUXO2
Terminal block	Replacement front connector with 8 wiring terminals $(A+B)$	NX-TBA082
	Replacement front connector with 16 wiring terminals $(A+B)$	NX-TBA162

Computer software

Name	Model
Sysmac Studio version 1.08 or higher ${ }^{1}$	SYSMAC-SE2 $\square \square \square$

*1. Please contact your OMRON representative for compatibility between the Sysmac Studio version 1.07 or lower and NX I/O units.

R88D-KN $\square \square \square-E C T$

Accurax G5 rotary drive

Accurate motion control in a compact size servo drive family. EtherCAT and safety builtin.

- Safety conforming ISO13849-1 PL-d
- High-response frequency of 2 kHz
- High resolution provided by 20 bits encoder
- External encoder input for full closed loop
- Real time auto-tuning
- Advanced tuning algorithms (Anti-vibration function, torque feedforward, disturbance observer)

Ratings

- 230 VAC single-phase 100 W to 1.5 kW (8.59 Nm)
- 400 VAC three-phase 600 W to 15 kW (95.5 Nm)

System configuration

Servo motor supported

Standard servo motors

High inertia servo motors

Type designation

Servo drive

R88D-KN01H-ECT

Servo drive specifications

Single-phase, 230 V

	ervo drive type	R88D-KN	01H-ECT	02H-ECT	04H-ECT	08H-ECT	10H-ECT	15H-ECT	
Applicable servo motor		R88M-K \square	05030(H/T)- \square	20030(H/T)- \square	40030(H/T)- \square	75030(H/T)- \square	1K020(H/T)- \square	1K030(H/T)- \square	
		10030(H/T)- \square	-	-	-	-	1K530(H/T)- \square		
		-	-	-	-	-	$1 \mathrm{~K} 520(\mathrm{H} / \mathrm{T})-\square$		
		-	-	-	-	-	90010(H/T)- \square		
$\left.\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	Max. applicable motor capacity W		100	200	400	750	1000	1500	
	Continuous output current Arms		1.2	1.6	2.6	4.1	5.9	9.4	
	Input power		Main circuit	Single-phase/3-phase, 200 to 240 VAC +10 to -15\% ($50 / 60 \mathrm{~Hz}$)					
	Supply		Control circuit	Single-phase, 200 to 240 VAC +10 to -15\% (50/60 Hz)					
	Control method		IGBT-driven PWM method, sinusoidal drive						
	Feedback		Serial encoder (incremental/absolute value)						
	\sim Usage/storage temperature		0 to $55^{\circ} \mathrm{C} /-20$ to $65^{\circ} \mathrm{C}$						
			90\% RH or less (non-condensing)						
				1000 m or less above sea level					
	\bigcirc ¢ ${ }^{\text {¢ }}$ Vibration/shock resistance (max.)		$5.88 \mathrm{~m} / \mathrm{s}^{2} 10$ to 60 Hz (Continuous operation at resonance point is not allowed) $/ 19.6 \mathrm{~m} / \mathrm{s}^{2}$						
	Configuration		Base mounted						
	Approx. weight	kg	0.8		1.1	1.6	1.8		

Three-phase, 400 V

General specifications

	erformance	Frequency characteristics	2 kHz
	Command input		EtherCAT commands (for sequence, motion, data setting/reference, monitor, adjustment, and other commands).
	Drive Profile ${ }^{1}$		CSP, CSV, CST, Homing and Position Profile modes (CiA402 Drive Profile) Homing mode Position profile mode Dual touch probe function (Latch function) Torque limit function
	Sequence input signal		Multi-function input $\times 8$ by parameter setting (forward/reverse drive prohibition, emergency stop, external latch, origin proximity, forward/reverse torque limit, general purpose monitor input).
	Sequence output signal		$1 \times$ servo drive error output $2 \times$ multi-function outputs by parameters setting (servo ready, brake release, torque limit detection, zero speed detection, warning output, position completion, error clear attributed, programmable output)
USB communications		Interface	Personal computer/Connector mini-USB
		Communications standard	Compliant with USB 2.0 standard
		Function	Parameter setting, status monitoring and tuning
	EtherCAT communications	Communications protocol	IEC 61158 Type 12, IEC 61800-7
		Physical layer	100BASE-TX (IEEE802.3)
		Connectors	RJ45 $\times 2$ ECAT IN: EtherCAT input $\times 1$ ECAT OUT: EtherCAT output $\times 1$
		Communications media	Category 5 or higher (cable with double, aluminium tape and braided shielding is recommended)
		Communications distance	Distance between nodes: 100 mmax .
		LED indicators	RUN $\times 1$ ERR $\times 1$ L/A IN (Link/Activity IN) $\times 1$ L/A OUT (Link/activity OUT) $\times 1$
	Autotuning		Automatic motor parameter setting. One parameter rigidity setting. Inertia detection.
	Dynamic brake (DB)		Built-in. Operates during main power OFF, servo alarm, servo OFF or overtravel.
	Regenerative processing		Internal resistor included in models from 600 W to 5 kW . Regenerative resistor externally mounted (option).
	Overtravel (OT) prevention function		DB stop, deceleration stop or coast to stop during P-OT, N-OT operation
\pm	Encoder divider function		Gear ratio
	Protective functions		Overcurrent, overvoltage, undervoltage, overspeed, overload, encoder error, overheat...
	Analog monitor functions for supervision		Analog monitor of motor speed, speed reference, torque reference, command following error, analog input... The monitoring signals to output and their scaling can be specified with parameters. Number of channels: 2 (Output voltage: $\pm 10 \mathrm{~V}$ DC)
Panel operator		Display functions	$2 \times$ digit 7-segment LED display shows the drive status, alarm codes, parameters...
		Switches	$2 \times$ rotary switches for setting the node address
CHARGE lamp			Lits when the main circuit power supply is turned ON.
Safety terminal		Functions	Safety Torque OFF function to cut off the motor current and stop the motor. Output signal for failure monitoring function.
		Conformed standards	EN ISO13849-1:2008 (PL- d, Performance Level d), IEC61800-5 -2:2007 (function STO, Safe Torque OFF), EN61508:2001 (Safety Integrity Level 2, SIL2), EN954-1:1996 (CAT3).
	External encoder feedback		Serial signal and line-driver A-B-Z encoder for full-closed control

${ }^{* 1}$ The CSV, CST and Homing modes are supported in the servo drive with version 2.0 or higher. The Position profile mode is supported in the servo drive version 2.1 or higher

Servo drive part names

Note: The above picture shows 230 V servo drives models only. The 400 V servo drives have 24 VDC power input terminals for control circuit instead of L1C and L2C terminals.

I/O specifications

Terminals specifications

Symbol	Name	Function
L1	Main power supply input terminal	AC power input terminals for the main circuit Note: for single-phase servo drives connect the power supply input to L1 and L3.
L2		
L3		
L1C	Control power supply input terminal	AC power input terminals for the control circuit (for 200 V single/three-phase servo drives only).
L2C		
24 V		DC power input terminals for the control circuit (for 400 V three-phase servo drives only).
0 V		
B1	External regeneration resistor connection terminals	Servo drives 200 V below 750 W and 400 V above 5 kW : no internal resistor is connected. Leave B2 and B 3 open. Connect an external regenerative resistor between B 1 and B 2 . Servo drives from 600 W to 5 kW : short-circuit in B2 and B3 for internal regenerative resistor. If the internal regenerative resistor is insufficient, connect an external regenerative resistor between B 1 and B 2 and remove the wire between B2 and B3.
B2		
B3		
DB1	Dynamic brake resistance control terminals	For 7.5 kW and 15 kW servo drives: These terminals are used to control the MC for externally connected dynamic brake resistance. Connect them if required.
DB2		
DB3		For 7.5 kW servo drive: Normally DB3 and DB4 are connected. When using an externally connected
DB4		Dynamic Brake Unit, remove the short bar from between DB3 and DB4.
U	Servo motor connection terminals	Terminals for outputs to the servomotor.
V		
W		

I/O signals (CN1) - input signals

Pin No.	Signal name	Function			
6	I-COM	\pm pole of external DC power. The power must use 12 to 24 V ($\pm 5 \%$)			
5	E-STOP	Emergency stop		The signal name shows the factory setting. The function can be changed by parameter setting.	
7	P-OT	Forward run prohibited			
8	N-OT	Reverse run prohibited			
9	DEC	Origin proximity			
10	EXT3	External latch input 3			
11	EXT2	External latch input 2			
12	EXT1	External latch input 1			
13	SI-MON0	General purpose monitor input 0			
14	BTP-I	Connecting pin for the absolute encoder backup battery. Do not connect when a battery is connected to the encoder cable (CN2 connector).			
15	BTN-I				
17	-	Terminals not used. Do not connect.			
18	-				
19	-				
20	-				
21	-				
22	-				
23	-				
24	-				
-	PCL	Forward torque limit ${ }^{\text {a }}$			
	NCL	Reverse torque limit			
	SI-MON1	General-purpose monitor input 1			
	SI-MON2	General-purpose monitor input 2			
Shell	FG	Shield ground. Connected to frame ground if the shield wire of the I/O signal cable is connected to the connector shell.			
16	GND	Signal ground. It is insulated with power supply (I-COM) for the control signal in the servo drive.			

I/O signals (CN1) - output signals

Pin No.	Signal name	Function	
1	BRK-OFF+	External brake release signal	
2	BRK-OFF		
25	S-RDY+	Servo ready: ON when there is no servo alarm and control/main circuit power supply is ON	
26	S-RDY-		
3	ALM +	Servo alarm: Turns OFF when an error is detected	
4	ALM-		
-	INP1	Position complete output 1	The function of output signals allocated to pins 1, 2, 25 and 26 can be changed with these options by parameters settings
	TGON	Speed detection	
	T_LIM	Torque limit	
	ZSP	Zero speed	
	VCMP	Speed command status	
	INP2	Position complete output 2	
	WARN1	Warning 1	
	WARN2	Warning 2	
	PCMD	Position command status	
	V_LIM	Speed limit	
	ALM-ATB	Error clear attribute	
	R-OUT1	Programmable output 1	
	R-OUT2	Programmable output 2	

External encoder connector (CN4)

Pin No.	Signal name	Function
1	E5V	External scale power supply output. Use at $5.2 \mathrm{~V} \pm 5 \%$ and at or below 250 mA .
2	EOV	This is connected to the control circuit ground connected to connector CN1.
3	PS	External scale signal I/O (serial signal).
4	/PS	
5	EXA	External scale signal input (Phase A, B, and Z signals). Performs the input and output of phase A, B and Z signals.
6	/EXA	
7	EXB	
8	/EXB	
9	EXZ	
10	/EXZ	
Shell	FG	Shield ground

Monitor connector (CN5)

Pin No.	Signal name	Function
1	AM1	Analog monitor output 1. Outputs the analog signal for the monitor. Use the parameters setting to select the output to monitor. Default setting: Motor rotation speed $1 \mathrm{~V} /(1000 \mathrm{r} / \mathrm{min})$.
2	AM2	Analog monitor output 2. Outputs the analog signal for the monitor. Use the parameters setting to select the output to monitor. Default setting: Motor rotation speed $1 \mathrm{~V} /(1000 \mathrm{r} / \mathrm{min})$.
3	GND	Ground for analog monitors $1,2$.
4	-	Terminals not used. Do not connect.
5	-	
6	-	

Safety connector (CN8)

Pin No.	Signal name	Function	
1	-	Not used. Do not connect	
2	-		
3	SF1-	Safety input $1 \& 2$ 2. This input turns OFF the power transistor drive signals in the servo drive to cut off the current output to the motor.	
4	SF1 +		
5	SF2-		
6	SF2 +	A monitor signal is output to detect a safety function failure.	
7	EDM -		
8	EDM +	Frame ground.	
Shell	FG		

Dimensions

Servo drives

R88D-KN01H/02H-ECT ($230 \mathrm{~V}, 100$ to 200 W)

R88D-KN04H-ECT (230 V, 400 W)

R88D-KN08H-ECT (230 V, 750 W)

R88D-KN10H/15H-ECT (230 V, 1 to 1.5 kW)

OmROn

R88D-KN06F/10F/15F-ECT (400 V, 600 W to 1.5 kW)

R88D-KN20F-ECT (400 V, 2 kW)

R88D-KN30F/50F-ECT (400 V, 3 to 5 kW)

R88D-KN75F-ECT (400 V, 7.5 kW)

R88D-KN150F-ECT (400 V, 15 kW)

>	R3.5

Filters

Filter model	External dimensions		Mount dimensions				
	\mathbf{H}		\mathbf{W}	\mathbf{D}	M1		M2
R88A-FIK102-RE	190	42	44	180	20		
R88A-FIK104-RE	190	57	30	180	30		
R88A-FIK107-RE	190	64	35	180	40		
R88A-FIK114-RE	190	86	35	180	60		
R88A-FIK304-RE	196	92	40	186	70		
R88A-FIK306-RE	238	94	40	228	70		
R88A-FIK312-RE	291	130	40	278	100		
R88A-FIK330-RE	310	233	50	293	180		
R88A-FIK350-RE	506	261	52	491	200		

Installation

Single-phase, 230 VAC

[^5]Note: The input function of pins 5 and 7 to 13, and output function of pins 1, 2,25 and 26 , can be changed via parameter settings.

Three-phase, 400 VAC

*1 For servo drives from 600 W to 5 kW , B2 and B3 are short-circuited. If the internal regenerative resistor is insufficient, remove the wire between B2 and B3 and connect an external regenerative resistor between B 1 and B 2 .
*2 For use only with an absolute encoder. If a backup battery is connected to CN1 I/O connector, an encoder cable with a battery is not required.
*3 Wiring diagram example using the G9SX safety unit. If a safety unit is not used, keep the factory safety bypass connector installed in the CN8.
Note: The input function of pins 5 and 7 to 13, and output function of pins 1, 2, 25 and 26, can be changed via parameter settings.

Ordering information

Accurax G5 series EtherCAT reference configuration

(1)

Standard servo motor 3000 rpm ($50 \mathrm{~W}-750 \mathrm{~W}$)

High inertia servo motor 3000 rpm (200 W - 750 W)
(1)

Standard servo motor 3000 rpm (1 kW - 5 kW) $2000 \mathrm{rpm}(400 \mathrm{~W}-5 \mathrm{~kW})$ 1000 rpm (900 W-3 kW)

High inertia servo motor 2000 rpm (1 kW - 5 kW)
(1)

Standard servo motor 1500 rpm (7.5 kW - 15 kW) $1000 \mathrm{rpm}(4.5 \mathrm{~kW}-6 \mathrm{~kW}$)

High inertia servo motor 1500 rpm (7.5 kW)
(3) Accurax G5 series EtherCAT

Note: The symbols (1)(2)(3)(4)(5)... show the recommended sequence to select the components in Accurax G5 servo system

Servo motors, power \& encoder cables

Note: (1)(2) Refer to the Accurax G5 servo motor chapter for servomotor, motor cables or connectors selection

Servo drives

Symbol	Specifications		Servo drive models	(1) Compatible G5 series rotary servo motors		
			Standard models	High inertia models		
(3)	1 phase 230 VAC	100 W		R88D-KN01H-ECT	R88M-K05030(H/T)- \square	-
			R88M-K10030(H/T)- \square		-	
		200 W	R88D-KN02H-ECT	R88M-K20030(H/T)- \square	R88M-KH20030(H/T)- \square	
		400 W	R88D-KN04H-ECT	R88M-K40030(H/T)- \square	R88M-KH40030(H/T)- \square	
		750 W	R88D-KN08H-ECT	R88M-K75030(H/T)- \square	R88M-KH75030(H/T)- \square	
		1.0 kW	R88D-KN10H-ECT	R88M-K1K020(H/T)- \square	-	
		1.5 kW	R88D-KN15H-ECT	R88M-K1K030(H/T)- \square	-	
				R88M-K1K530(H/T)- \square	-	
				R88M-K1K520(H/T)- \square	-	
				R88M-K90010(H/T)- \square	-	
	3 phase 400 VAC	600 W	R88D-KN06F-ECT	R88M-K40020(F/C)- \square	-	
				R88M-K60020(F/C)- \square	-	
		1.0 kW	R88D-KN10F-ECT	R88M-K75030(F/C)- \square	-	
				R88M-K1K020(F/C)- \square	R88M-KH1K020(F/C)-■	
		1.5 kW	R88D-KN15F-ECT	R88M-K1K030(F/C)- \square	-	
				R88M-K1K530(F/C)- \square	-	
				R88M-K1K520(F/C)- \square	R88M-KH1K520(F/C)-■	
				R88M-K90010(F/C)- \square	-	
		2.0 kW	R88D-KN20F-ECT	R88M-K2K030(F/C)- \square	-	
				R88M-K2K020(F/C)- \square	R88M-KH2K020(F/C)-■	
		3.0 kW	R88D-KN30F-ECT	R88M-K3K030(F/C)- \square	-	
				R88M-K3K020(F/C)- \square	R88M-KH3K020(F/C)-■	
				R88M-K2K010(F/C)- \square	-	
		5.0 kW	R88D-KN50F-ECT	R88M-K4K030(F/C)- \square	-	
				R88M-K5K030(F/C)- \square	-	
				R88M-K4K020(F/C)- \square	R88M-KH4K020(F/C)- \square	
				R88M-K5K020(F/C)- \square	R88M-KH5K020(F/C)-■	
				R88M-K4K510C-	-	
				R88M-K3K010(F/C)- \square	-	
		7.5 kW	R88D-KN75F-ECT	R88M-K6K010C- \square	-	
				R88M-K7K515C- \square	R88M-KH7K515C- \square	
		15 kW	R88D-KN150F-ECT	R88M-K11K015C- \square	-	
				R88M-K15K015C- \square	-	

Signals cables for I/O general purpose (CN1)

Symbol	Description	Connect to		Model
(4)	I/O connector kit (26 pins)	For I/O general purpose	-	R88A-CNW01C
(5)	I/O signals cable	For I/O general purpose	1 m	R88A-CPKB001S-E
			2 m	R88A-CPKB002S-E
(6)	Terminal block cable	For I/O general purpose	1 m	XW2Z-100J-B34
			2 m	XW2Z-200J-B34
(7)	Terminal block (M3 screw and for pin terminals)		-	XW2B-20G4
	Terminal block (M3.5 screw and for fork/round terminals)		-	XW2B-20G5
	Terminal block (M3 screw and for fork/round terminals)		-	XW2D-20G6

External encoder cable (CN4)

Symbol	Name		Model
8	External encoder cable	5 m	R88A-CRKM005SR-E
		10 m	R88A-CRKM010SR-E
		20 m	R88A-CRKM020SR-E

Analog monitor (CN5)

Symbol	Name		Model
9	Analog monitor cable	1 m	R88A-CMK001S

USB personal computer cable (CN7)

Symbol	Name		Model
10	USB mini-connector cable	2 m	AX-CUSBM002-E

Cable for safety (CN8)

Symbol	Name		Model
(11)	Safety cable	3 m	R88A-CSK003S-E

Machine controller

Symbol	Name		Model
(12)	NJ -series	CPU unit	NJ501-1500 (64 axes)
			NJ501-1400 (32 axes)
			NJ501-1300 (16 axes)
			NJ301-1200 (8 axes)
			NJ301-1100 (4 axes)
		Power supply unit	NJ-PA3001 (220 VAC)
			NJ-PD3001 (24 VDC)

External regenerative resistor

Symbol	Regenerative resistor unit model	Specifications
13	R88A-RR08050S	$50 \Omega, 80 \mathrm{~W}$
	R88A-RR080100S	$100 \Omega, 80 \mathrm{~W}$
	R88A-RR22047S	$47 \Omega, 220 \mathrm{~W}$
	R88A-RR50020S	$20 \Omega, 500 \mathrm{~W}$

Filters						
Symbol	Applicable servodrive	Filter model	Manufacturer	Rated current	Leakage current	Rated voltage
(14)	R88D-KN01H-ECT, R88D-KN02H-ECT	R88A-FIK102-RE	Rasmi Electronics Ltd.	2.4 A	3.5 mA	250 VAC single-phase
	R88D-KN04H-ECT	R88A-FIK104-RE		4.1 A	3.5 mA	
	R88D-KN08H-ECT	R88A-FIK107-RE		6.6 A	3.5 mA	
	R88D-KN10H-ECT, R88D-KN15H-ECT	R88A-FIK114-RE		14.2 A	3.5 mA	
	R88D-KN06F-ECT, R88D-KN10F-ECT, R88D-KN15F-ECT	R88A-FIK304-RE		4 A	$0.3 \mathrm{~mA} / 32 \mathrm{~mA}{ }^{1}$	400 VAC three-phase
	R88D-KN20F-ECT	R88A-FIK306-RE		6 A	$0.3 \mathrm{~mA} / 32 \mathrm{~mA}^{1}$	
	R88D-KN30F-ECT, R88D-KN50F-ECT	R88A-FIK312-RE		12.1 A	$0.3 \mathrm{~mA} / 32 \mathrm{~mA}^{1}$	
	R88D-KN75F-ECT	R88A-FIK330-RE		22 A	$0.3 \mathrm{~mA} / 40 \mathrm{~mA}^{1}$	
	R88D-KN150F-ECT	R88A-FIK350-RE		44 A	$2 \mathrm{~mA} / 130 \mathrm{~mA}^{1}$	

1. Momentary peak leakage current for the filter at switch-on/off.

Connectors

Specifications	Model
External encoder connector (for CN4)	R88A-CNK41L
Safety I/O signal connector (for CN8)	R88A-CNK81S

Computer software

Specifications	Model
Sysmac Studio version 1.0 or higher	SYSMAC-SE2
CX-Drive version 2.10 or higher	CX-DRIVE 2.10
CX-One software package including CX-Drive 2.10 or higher	CX-ONE

Note: If CX-One is installed on the same computer as Sysmac Studio, it must be CX-One v4.2 or higher.

R88D-KN $\square \square \square-E C T-L$

Accurax G5 linear drive

Accurate motion control in a compact size servo drive family. EtherCAT and safety builtin.

- Ironless and iron-core motor types
- Safety conforming ISO13849-1 PL-d
- High-response frequency of 2 kHz
- High resolution serial encoder for greater accuracy provided by 20 bits encoder
- Real time auto-tuning
- Advanced tuning algorithms (Anti-vibration function, torque feedforward, disturbance observer)
Ratings
- Iron-core motors - 48 to 760 N (2000 N peak force)
- Ironless motors - 29 to 423 N (2100 N peak force)

System configuration

Servo motor supported

Linear servo motor					Accurax G5 linear drive EtherCAT model	
Type	Rated force	Peak force		Model	230V	400V
Linear motor coil						
R88L-EC-FW- \square Iron-core motors	48 N	105 N	Coil without connectors	R88L-EC-FW-0303-ANPC	R88D-KN02H-ECT-L	R88D-KN06F-ECT-L
	96 N	210 N		R88L-EC-FW-0306-ANPC	R88D-KN04H-ECT-L	R88D-KN10F-ECT-L
	160 N	400 N		R88L-EC-FW-0606-ANPC	R88D-KN08H-ECT-L	R88D-KN15F-ECT-L
	240 N	600 N		R88L-EC-FW-0609-ANPC	R88D-KN10H-ECT-L	R88D-KN20F-ECT-L
	320 N	800 N		R88L-EC-FW-0612-ANPC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	608 N	1600 N		R88L-EC-FW-1112-ANPC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	760 N	2000 N		R88L-EC-FW-1115-ANPC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	48 N	105 N	Coil with connectors	R88L-EC-FW-0303-APLC	R88D-KN02H-ECT-L	R88D-KN06F-ECT-L
	96 N	210 N		R88L-EC-FW-0306-APLC	R88D-KN04H-ECT-L	R88D-KN10F-ECT-L
	160 N	400 N		R88L-EC-FW-0606-APLC	R88D-KN08H-ECT-L	R88D-KN15F-ECT-L
	240 N	600 N		R88L-EC-FW-0609-APLC	R88D-KN10H-ECT-L	R88D-KN20F-ECT-L
	320 N	800 N		R88L-EC-FW-0612-APLC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	608 N	1600 N		R88L-EC-FW-1112-APLC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	760 N	2000 N		R88L-EC-FW-1115-APLC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
R88L-EC-GWIronless motors 230 V	29 N	100 N	Coil without connectors	R88L-EC-GW-0303-ANPS	R88D-KN02H-ECT-L	-
	58 N	200 N		R88L-EC-GW-0306-ANPS	R88D-KN08H-ECT-L	-
	87 N	300 N		R88L-EC-GW-0309-ANPS	R88D-KN10H-ECT-L	-
	70 N	240 N		R88L-EC-GW-0503-ANPS	R88D-KN02H-ECT-L	-
	140 N	480 N		R88L-EC-GW-0506-ANPS	R88D-KN04H-ECT-L	-
	210 N	720 N		R88L-EC-GW-0509-ANPS	R88D-KN08H-ECT-L	-
	141 N	700 N		R88L-EC-GW-0703-ANPS	R88D-KN04H-ECT-L	-
	282 N	1400 N		R88L-EC-GW-0706-ANPS	R88D-KN08H-ECT-L	-
	423 N	2100 N		R88L-EC-GW-0709-ANPS	R88D-KN10H-ECT-L	-
	29 N	100 N	Coil with connectors	R88L-EC-GW-0303-APLS	R88D-KN02H-ECT-L	-
	58 N	200 N		R88L-EC-GW-0306-APLS	R88D-KN08H-ECT-L	-
	87 N	300 N		R88L-EC-GW-0309-APLS	R88D-KN10H-ECT-L	-
	70 N	240 N		R88L-EC-GW-0503-APLS	R88D-KN02H-ECT-L	-
	140 N	480 N		R88L-EC-GW-0506-APLS	R88D-KN04H-ECT-L	-
	210 N	720 N		R88L-EC-GW-0509-APLS	R88D-KN08H-ECT-L	-
	141 N	700 N		R88L-EC-GW-0703-APLS	R88D-KN04H-ECT-L	-
	282 N	1400 N		R88L-EC-GW-0706-APLS	R88D-KN08H-ECT-L	-
	423 N	2100 N		R88L-EC-GW-0709-APLS	R88D-KN10H-ECT-L	-
Accurax linear motor axis						
R88L-EA-AFLinear motor axis	48 N	105 N		L-EA-AF-0303- \square	R88D-KN02H-ECT-L	R88D-KN10F-ECT-L
	96 N	210 N		L-EA-AF-0306- \square	R88D-KN04H-ECT-L	R88D-KN10F-ECT-L
	160 N	400 N		L-EA-AF-0606- \square	R88D-KN08H-ECT-L	R88D-KN15F-ECT-L
	240 N	600 N		L-EA-AF-0609- \square	R88D-KN10H-ECT-L	R88D-KN20F-ECT-L
	320 N	800 N		L-EA-AF-0612- \square	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	608 N	1600 N		L-EA-AF-1112- \square	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	760 N	2000 N		L-EA-AF-1115- \square	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L

Type designation
Servo drive

ECT: EtherCAT comms
Capacity and voltage

Voltage	Code	Output
230 V	01 H	100 W
	02 H	200 W
	04 H	400 W
	08 H	750 W
	10 H	1 kW
	15 H	1.5 kW
400 V	06 F	600 W
	10 F	1.0 kW
	15 F	1.5 kW
	20 F	2.0 kW
	30 F	3.0 kW

Servo drive specifications
Single-phase, 230 V

Three-phase, 400 V

General specifications

	rformance	Frequency characteristics	2 kHz
	Command input		EtherCAT commands (for sequence, motion, data setting/reference, monitor, adjustment, and other commands).
	CiA402 Drive profile		Cyclic synchronous position mode Cyclic synchronous velocity mode Cyclic synchronous torque mode Touch probe function Torque limit function Homing mode
¢	Sequence input signal		- Multi-function input $\times 8$ by parameter setting (forward/reverse drive prohibition, emergency stop, external latch, origin proximity, forward/reverse torque limit, general purpose monitor inputs).
$\left\|\begin{array}{l} n \\ 0 \\ 0 \\ 0 \end{array}\right\|$	Sequence output signal		$1 \times$ servo drive error output $2 \times$ multi-function outputs by parameters setting (servo ready, brake release, speed limit detection, force limit detection, zero speed detection, warning output, position completion, error clear attributed, remote output, speed detection, position command status, speed command status)
	USB communications	Interface	Personal computer/Connector mini-USB
		Communications standard	Compliant with USB 2.0 standard
		Function	Parameter setting and status monitoring
	EtherCAT communications	Communications protocol	IEC 61158 Type 12, IEC 61800-7
		Physical layer	100BASE-TX (IEEE802.3)
		Connectors	RJ45 $\times 2$ ECAT IN: EtherCAT input $\times 1$ ECAT OUT: EtherCAT output $\times 1$
		Communications media	Category 5 or higher (cable with double, aluminium tape and braided shielding is recommended)
		Communications distance	Distance between nodes: 100 mmax .
$\left\|\begin{array}{c} n \\ \\ \\ \hline 0 \end{array}\right\|$		LED indicators	RUN $\times 1$ ERR $\times 1$ L/A IN (Link/Activity IN) $\times 1$ L/A OUT (Link/activity OUT) $\times 1$
	Automatic load inertia detection		Automatic motor parameter setting. One parameter rigidity setting.
	Dynamic brake (DB)		Built-in. Operates during main power OFF, servo alarm, servo OFF or overtravel.
	Regenerative processing		Internal resistor included in models from 600 W to 5 kW . Regenerative resistor externally mounted (option).
	Overtravel (OT) prevention function		DB stop, deceleration stop or coast to stop during P-OT, N-OT operation
-	Encoder divider function		Optional division possible
	Protective functions		Overcurrent, overvoltage, undervoltage, overspeed, overload, encoder error, overheat...
	Analog monitor functions for supervision		Analog monitor of motor speed, speed reference, torque reference, command following error, analog input ... The monitoring signals to output and their scaling can be specified with parameters. Number of channels: 2 (Output voltage: ± 10 VDC)
Panel operator		Display functions	$2 \times$ digit 7-segment LED display shows the drive status, alarm codes, parameters...
		Switches	$2 \times$ rotary switches for setting the node address
	CHARGE lamp		Lits when the main circuit power supply is turned ON.
Safety terminal		Functions	Safety Torque OFF function to cut off the motor current and stop the motor. Output signal for failure monitoring function.
		Conformed standards	EN ISO13849-1:2008 (PL- d, Performance Level d), IEC61800-5 -2:2007 (function STO, Safe Torque OFF), EN61508:2001 (Safety Integrity Level 2, SIL2), EN954-1:1996 (CAT3).
External encoder feedback			Serial signal and line-driver A-B-Z encoder

Servo drive part names

Note: The above picture shows 230 V servo drives models only. The 400 V servo drives have 24 VDC power input terminals for control circuit instead of L1C and L2C terminals.

I/O specifications

Terminals specifications

Symbol	Name	Function
L1	Main power supply input terminal	AC power input terminals for the main circuit
Note: for single-phase servo drives connect the power supply input to L1 and L3.		

I/O signals (CN1) - input signals

I/O signals (CN1) - output signals

Pin No.	Signal name	Function	
1	BRK-OFF+	External brake release signal	
2	BRK-OFF		
25	S-RDY+	Servo ready: ON when there is no servo alarm and control/main circuit power supply is ON	
26	S-RDY-		
3	ALM+	Servo alarm: Turns OFF when an error is detected	
4	ALM-		
-	INP1	Position complete output 1	The function of output signals allocated to pins 1, 2, 25 and 26 can be changed with these options by parameters settings
	TGON	Motor speed detection	
	F_LIMIT	Force limit detection	
	ZSP	Zero speed	
	VCMP	Speed conformity output	
	WARN1	Warning 1	
	WARN2	Warning 2	
	PCMD	Position command status	
	INP2	Position complete output 2	
	VLIMIT	Speed limit detection	
	ALM-ATB	Error clear attribute	
	VCMD	Speed command status	
	R-OUT1	Remote output 1	
	R-OUT2	Remote output 1	

External encoder connector (CN4)

Pin No.	Signal name	Function
1	E5V	External scale power supply output. Use at $5.2 \mathrm{~V} \pm 5 \%$ and at or below 250 mA .
2	EOV	This is connected to the control circuit ground connected to connector CN1.
3	PS	External scale signal I/O (serial signal).
4	/PS	
5	EXA	External scale signal input (Phase A, B, and Z signals). Performs the input and output of phase A, B and Z signals.
6	/EXA	
7	EXB	
8	/EXB	
9	EXZ	
10	/EXZ	
Shell	FG	Shield ground

Monitor connector (CN5)

Pin No.	Signal name	Function
1	AM1	Analog monitor output 1. Outputs the analog signal for the monitor. Use the parameters setting to select the output to monitor. Default setting: Motor rotation speed $1 \mathrm{~V} /(500 \mathrm{~mm} / \mathrm{s})$.
2	AM2	Analog monitor output 2. Outputs the analog signal for the monitor. Use the parameters setting to select the output to monitor. Default setting: Motor rotation speed $1 \mathrm{~V} /(33 \%$ of nominal force $)$.
3	GND	Ground for analog monitors $1,2$.
4	-	Terminals not used. Do not connect.
5	-	
6	-	

Safety connector (CN8)

Pin No.	Signal name	Function	
1	-	Not used. Do not connect.	
2	-		
3	SF1-	Safety input $1 \& 2$ 2. This input turns OFF the power transistor drive signals in the servo drive to cut off the current output to the motor.	
4	SF1 +		
5	SF2-		
6	SF2 +	A monitor signal is output to detect a safety function failure.	
7	EDM -		
8	EDM +	Frame ground.	
Shell	FG		

Dimensions

Servo drives

R88D-KN02H-ECT-L (230 V, 200 W)

R88D-KN04H-ECT-L (230 V, 400 W)

R88D-KN08H-ECT-L (230 V, 800 W)

R88D-KN10H/15H-ECT-L (230 V, 1 to 1.5 kW)

R88D-KN06F/10F/15F-ECT-L (400 V, 600 W to 1.5 kW)

R88D-KN20F-ECT-L (400 V, 2 kW)

R88D-KN30F-ECT-L (400V, 3 kW)

Filters

Filter model	External dimensions		Mount dimensions				
	\mathbf{H}		\mathbf{W}	\mathbf{W}	M1		M2
R88A-FIK102-RE	190	42	44	180	20		
R88A-FIK104-RE	190	57	30	180	30		
R88A-FIK107-RE	190	64	35	180	40		
R88A-FIK114-RE	190	86	35	180	60		
R88A-FIK304-RE	196	92	40	186	70		
R88A-FIK306-RE	238	94	40	228	70		
R88A-FIK312-RE	291	130	40	278	100		

Installation

Single-phase, 230 VAC

[^6]*2 Wiring diagram example using the G9SX safety unit. If a safety unit is not used, keep the factory safety bypass connector installed in the CN8.
Note: The input function of pins 5 and 7 to 13 , and output function of pins 1, 2, 25 and 26, can be changed via parameter settings.

Three-phase, 400 VAC

*1 Normally B2 and B3 are short-circuited. If the internal regenerative resistor is insufficient, remove the wire between B2 and B3 and connect an external regenerative resistor between B1 and B2
*2 Wiring diagram example using the G9SX safety unit. If a safety unit is not used, keep the factory safety bypass connector installed in the CN8.
Note: The input function of pins 5 and 7 to 13 , and output function of pins 1, 2, 25 and 26, can be changed via parameter settings.

Ordering information

Accurax G5 series EtherCAT reference configuration

Note: The symbols (1)(2)(3)(4)(5)... show the recommended sequence to select the components in Accurax G5 servo system

Servo motors, power \& encoder cables

Note: (1)(2) Refer to the Accurax linear motor chapter for linear motor, cables or connectors selection

Servo drives

Symbol	Specifications	Servo drive models	(1) Compatible Accurax G5 Linear motors		
			Iron-core motors	Ironless motors	Linear motor axis
(3)	1 phase 230 VAC	R88D-KN02H-ECT-L	R88L-EC-FW-0303-■	R88L-EC-GW-0303-■	R88L-EA-AF-0303-■
				R88L-EC-GW-0503- \square	
		R88D-KN04H-ECT-L	R88L-EC-FW-0306-■	R88L-EC-GW-0506- \square	R88L-EA-AF-0306-■
				R88L-EC-GW-0703- \square	
		R88D-KN08H-ECT-L	R88L-EC-FW-0606-■	R88L-EC-GW-0306- \square	R88L-EA-AF-0606-■
				R88L-EC-GW-0509- \square	
				R88L-EC-GW-0706- \square	
		R88D-KN10H-ECT-L	R88L-EC-FW-0609-■	R88L-EC-GW-0309-】	R88L-EA-AF-0609-■
				R88L-EC-FW-0709- \square	
		R88D-KN15H-ECT-L	R88L-EC-FW-0612- \square	-	R88L-EA-AF-0612-■
			R88L-EC-FW-1112- \square		R88L-EA-AF-1112- \square
			R88L-EC-FW-1115- \square		R88L-EA-AF-1115-■
	3 phase 400 VAC	R88D-KN06F-ECT-L	R88L-EC-FW-0303- \square	-	-
		R88D-KN10F-ECT-L	R88L-EC-FW-0306-■	-	R88L-EA-AF-0303-■
					R88L-EA-AF-0306-■
		R88D-KN15F-ECT-L	R88L-EC-FW-0606- \square	-	R88L-EA-AF-0606-■
		R88D-KN20F-ECT-L	R88L-EC-FW-0609- \square	-	R88L-EA-AF-0609- \square
		R88D-KN30F-ECT-L	R88L-EC-FW-0612- \square	-	R88L-EA-AF-0612-■
			R88L-EC-FW-1112- \square		R88L-EA-AF-1112-■
			R88L-EC-FW-1115- \square		R88L-EA-AF-1115- \square

Signals cables for I/O general purpose (CN1)

Symbol	Description	Connect to		Model
(4)	I/O connector kit (26 pins)	For I/O general purpose	-	R88A-CNW01C
(5)	I/O signals cable	For I/O general purpose	1 m	R88A-CPKB001S-E
			2 m	R88A-CPKB002S-E
(6)	Terminal block cable	For I/O general purpose	1 m	XW2Z-100J-B34
			2 m	XW2Z-200J-B34
(7)	Terminal block (M3 screw and for pin terminals)		-	XW2B-20G4
	Terminal block (M3.5 screw and for fork/round terminals)		-	XW2B-20G5
	Terminal block (M3 screw and for fork/round terminals)		-	XW2D-20G6

External encoder cable (CN4)

Symbol	Name		Model
	External encoder cable	5 m	R88A-CRKM005SR-E
		10 m	R88A-CRKM010SR-E
		20 m	R88A-CRKM020SR-E

Analog monitor (CN5)

Symbol	Name		Model
9	Analog monitor cable	1 m	R88A-CMK001S

USB personal computer cable (CN7)

Symbol	Name		Model
10	USB mini-connector cable	2 m	AX-CUSBM002-E

Cable for safety (CN8)

Symbol	Name		Model
(11)	Safety cable	3 m	R88A-CSK003S-E

Machine controller

Symbol	Name		Model
(12)	NJ series	CPU unit	NJ501-1500 (64 axes)
			NJ501-1400 (32 axes)
			NJ501-1300 (16 axes)
			NJ301-1200 (8 axes)
			NJ301-1100 (4 axes)
		Power supply unit	NJ-PA3001 (220 VAC)
			NJ-PD3001 (24 VDC)

External regenerative resistor

Symbol	Regenerative resistor unit model	Specifications
13	R88A-RR08050S	$50 \Omega, 80 \mathrm{~W}$
	R88A-RR080100S	$100 \Omega, 80 \mathrm{~W}$
	R88A-RR22047S	$47 \Omega, 220 \mathrm{~W}$
	R88A-RR50020S	$20 \Omega, 500 \mathrm{~W}$

Filters

Symbol	Applicable servodrive	Filter model	Manufacturer	Rated current	Leakage current	Rated voltage
(14)	R88D-KN02H-ECT-L	R88A-FIK102-RE	Rasmi Electronics Ltd.	2.4 A	3.5 mA	250 VAC single-phase
	R88D-KN04H-ECT-L	R88A-FIK104-RE		4.1 A	3.5 mA	
	R88D-KN08H-ECT-L	R88A-FIK107-RE		6.6 A	3.5 mA	
	$\begin{aligned} & \text { R88D-KN10H-ECT-L, } \\ & \text { R88D-KN15H-ECT-L } \end{aligned}$	R88A-FIK114-RE		14.2 A	3.5 mA	
	R88D-KN06F-ECT-L, R88D-KN10F-ECT-L, R88D-KN15F-ECT-L	R88A-FIK304-RE		4 A	$0.3 \mathrm{~mA} / 32 \mathrm{~mA}{ }^{* 1}$	400 VAC three-phase
	R88D-KN20F-ECT-L	R88A-FIK306-RE		6 A	$0.3 \mathrm{~mA} / 32 \mathrm{~mA}{ }^{* 1}$	
	R88D-KN30F-ECT-L	R88A-FIK312-RE		12.1 A	$0.3 \mathrm{~mA} / 32 \mathrm{~mA}{ }^{* 1}$	

${ }^{* 1}$ Momentary peak leakage current for the filter at switch-on/off.

Connectors

Specifications	Model
External encoder connector (for CN4)	R88A-CNK41L
Safety I/O signal connector (for CN8)	R88A-CNK81S

Computer software

Specifications	Model
Sysmac Studio version 1.0 or higher	SYSMAC-SE2 $\square \square \square$
CX-Drive version 2.60 or higher	CX-DRIVE 2.60

Note: If CX-One is installed on the same computer as Sysmac Studio, it must be CX-One v4.2 or higher

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. SysCat_I165E-EN-02C In the interest of product improvement, specifications are subject to change without notice.

R88M-K \square, R88M-KH \square

Accurax G5 rotary motor

Servo family for accurate motion control. Power range extended up to 15 kW .

- Standard and high inertia servo motor models
- Peak torque 300% of rated torque during 3 seconds or more depending on model
- High resolution serial encoder provided by 20 bits encoder
- IP67 protection in all models
- Ultra-light and compact size motor
- Low speed ripple and low torque ripple due to low torque cogging
- Various shaft, brake and seal options

Ratings

- 230 VAC from 50 W to 1.5 kW (rated torque from 0.16 to 8.59 Nm)
- 400 VAC from 400 W to 15 kW
(rated torque from 1.91 Nm to 95.5 Nm)

System configuration

Accurax G5 servo drive EtherCAT model

3000 rpm (200 W to 750 W)

$2000 \mathrm{rpm}(1 \mathrm{~kW}$ to 5 kW$)$

1500 rpm (7.5 kW)

Servo motor / servo drive combination

Standard servo motors

Accurax G5 rotary servo motor						G5 EtherCAT
	Voltage	Speed	Rated torque	Capacity	Model	
	230 V	$3000 \mathrm{~min}^{-1}$	0.16 Nm	50 W	R88M-K05030(H/T)- \square	R88D-KN01H-ECT
			0.32 Nm	100 W	R88M-K10030(H/T)- \square	R88D-KN01H-ECT
			0.64 Nm	200 W	R88M-K20030(H/T)- \square	R88D-KN02H-ECT
			1.3 Nm	400 W	R88M-K40030(H/T)- \square	R88D-KN04H-ECT
			2.4 Nm	750 W	R88M-K75030(H/T)- \square	R88D-KN08H-ECT
			3.18 Nm	1000 W	R88M-K1K030(H/T)- \square	R88D-KN15H-ECT
			4.77 Nm	1500 W	R88M-K1K530(H/T)- \square	R88D-KN15H-ECT
	400 V		2.39 Nm	750 W	R88M-K75030(F/C)- \square	R88D-KN10F-ECT
			3.18 Nm	1000 W	R88M-K1K030(F/C)- \square	R88D-KN15F-ECT
			4.77 Nm	1500 W	R88M-K1K530(F/C)- \square	R88D-KN15F-ECT
			6.37 Nm	2000 W	R88M-K2K030(F/C)- \square	R88D-KN20F-ECT
			9.55 Nm	3000 W	R88M-K3K030(F/C)- \square	R88D-KN30F-ECT
$230 \mathrm{~V}(1 \mathrm{~kW}-1.5 \mathrm{~kW})$			12.7 Nm	4000 W	R88M-K4K030(F/C)- \square	R88D-KN50F-ECT
400 V (400 W-5 kW)			15.9 Nm	5000 W	R88M-K5K030(F/C)- \square	R88D-KN50F-ECT
	230 V	$2000 \mathrm{~min}^{-1}$	4.77 Nm	1000 W	R88M-K1K020(H/T)- \square	R88D-KN10H-ECT
			7.16 Nm	1500 W	R88M-K1K520(H/T)- \square	R88D-KN15H-ECT
an	400 V		1.91 Nm	400 W	R88M-K40020(F/C)- \square	R88D-KN06F-ECT
			2.86 Nm	600 W	R88M-K60020(F/C)- \square	R88D-KN06F-ECT
\square			4.77 Nm	1000 W	R88M-K1K020(F/C)- \square	R88D-KN10F-ECT
			7.16 Nm	1500 W	R88M-K1K520(F/C)- \square	R88D-KN15F-ECT
kW			9.55 Nm	2000 W	R88M-K2K020(F/C)- \square	R88D-KN20F-ECT
			14.3 Nm	3000 W	R88M-K3K020(F/C)- \square	R88D-KN30F-ECT
			19.1 Nm	4000 W	R88M-K4K020(F/C)- \square	R88D-KN50F-ECT
			23.9 Nm	5000 W	R88M-K5K020(F/C)- \square	R88D-KN50F-ECT
	400 V	$1500 \mathrm{~min}^{-1}$	47.8 Nm	7500 W	R88M-K7K515C- \square	R88D-KN75F-ECT
			70.0 Nm	11000 W	R88M-K11K015C- \square	R88D-KN150F-ECT
			95.5 Nm	15000 W	R88M-K15K015C-■	R88D-KN150F-ECT
	230 V	$1000 \mathrm{~min}^{-1}$	8.59 Nm	900 W	R88M-K90010(H/T)- \square	R88D-KN15H-ECT
	400 V		8.59 Nm	900 W	R88M-K90010(F/C)- \square	R88D-KN15F-ECT
			19.1 Nm	2000 W	R88M-K2K010(F/C)- \square	R88D-KN30F-ECT
			28.7 Nm	3000 W	R88M-K3K010(F/C)- \square	R88D-KN50F-ECT
			43.0 Nm	4500 W	R88M-K4K510C-■	R88D-KN50F-ECT
			57.3 Nm	6000 W	R88M-K6K010C- \square	R88D-KN75F-ECT

High inertia servo motors

Accurax G5 rotary servo motor						G5 EthercAT
	Voltage	Speed	Rated torque	Capacity	Model	
	230 V	$3000 \mathrm{~min}^{-1}$	0.64 Nm	200 W	R88M-KH20030(H/T)-■	R88D-KN02H-ECT
			1.3 Nm	400 W	R88M-KH40030(H/T)- \square	R88D-KN04H-ECT
			2.4 Nm	750 W	R88M-KH75030(H/T)-■	R88D-KN08H-ECT
	400 V	$2000 \mathrm{~min}^{-1}$	4.77 Nm	1000 W	R88M-KH1K020(F/C)- \square	R88D-KN10F-ECT
			7.16 Nm	1500 W	R88M-KH1K520(F/C)- \square	R88D-KN15F-ECT
			9.55 Nm	2000 W	R88M-KH2K020(F/C)- \square	R88D-KN20F-ECT
- 5 kW			14.3 Nm	3000 W	R88M-KH3K020(F/C)- \square	R88D-KN30F-ECT
			19.1 Nm	4000 W	R88M-KH4K020(F/C)- \square	R88D-KN50F-ECT
			23.9 Nm	5000 W	R88M-KH5K020(F/C)- \square	R88D-KN50F-ECT
7.5 KW		$1500 \mathrm{~min}^{-1}$	47.8 Nm	7500 W	R88M-KH7K515C-■	R88D-KN75F-ECT

Note: 1. For servo motor and cables part numbers refer to ordering information at the end of this chapter
2. Refer to the servo drive chapter for drive options selection and detailed specifications

Servo motor type designation

Standard servo motors

High inertia servo motors

Circular connector (only for 230 V models)
Capacity

200	200 W
400	400 W
750	750 W
1 K 0	1 kW
1 K 5	1.5 kW
2 K 0	2 kW
3 K 0	3 kW
4 K 0	4 kW
5 K 0	5 kW
7 K 5	7.5 kW

Rated Speed (r/min) \qquad Shaft end specifications

Blank	Straight shaft, no key
S1	400 V motor models - Shaft end with key (standard)
S2	230 V motor models - Straight, key, tapped (standard)

15	1500
20	2000
30	3000

Brake specifications

Blank	No brake
B	Brake

Voltage and encoder specifications
H: 230 V and 20-bit incremental encoder
T: 230 V and 17-bit absolute encoder
F: 400 V and 20 -bit incremental encoder
C: 400 V and 17-bit absolute encoder

Servo motor specifications

Standard servo motors 3000 r/min, 230 V

Ratings and specifications

Voltage			230 V						
Servo motor model R88M-K \square		20-bit incremental encoder	05030H- \square	10030H- \square	20030H- \square	$40030 \mathrm{H}-\square$	75030H- \square	1K030H- \square	1K530H- \square
		17-bit absolute encoder	05030T- \square	10030T- \square	20030T- \square	40030T- \square	75030T- \square	1K030T- \square	1K530T- \square
	ted output	W	50	100	200	400	750	1000	1500
	ted torque	Nm	0.16	0.32	0.64	1.3	2.4	3.18	4.77
	tantaneous peak torque	Nm	0.48	0.95	1.91	3.8	7.1	9.55	14.3
	ted current	A (rms)	1.1	1.1	1.5	2.4	4.1	6.6	8.2
	tantaneous max. current	A (rms)	4.7	4.7	6.5	10.2	17.4	28	35
	ted speed	min^{-1}	3000						
	x. speed	min^{-1}	6000					5000	
	rque constant	N.m/A	0.11 $\pm 10 \%$	0.21 $\pm 10 \%$	0.31 $\pm 10 \%$	0.39 $\pm 10 \%$	0.42 $\pm 10 \%$	0.37	0.45
Rotor moment of inertia (JM)		$\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}$ (without brake)	0.025	0.051	0.14	0.26	0.87	2.03	2.84
		kg $\cdot \mathrm{m}^{2} \times 10^{-4}$ (with brake)	0.027	0.054	0.16	0.28	0.97	2.35	3.17
	owable load moment of inertia (JL)	Multiple of (JM)	30^{17}				$20{ }^{17}$	15^{17}	
Rated power rate		kW/s (without brake)	10.1	19.9	29.0	62.4	65.6	49.8	80.1
		kW/s (with brake)	9.4	18.8	25.4	58	58.8	43	71.8
	owable radial load	N	68		245		490		
	owable thrust load	N	58		98		196		
Approx. mass		kg (without brake)	0.32	0.47	0.82	1.2	2.3	3.5	4.4
		kg (with brake)	0.53	0.68	1.3	1.7	3.1	4.5	5.4
	Rated voltage		24 VDC $\pm 10 \%$						
	Holding brake moment of inertia J	$\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}$	0.002		0.0018		0.33		
	Power consumption (at $20^{\circ} \mathrm{C}$)	W	7		9		17	19	
	Current consumption (at $20^{\circ} \mathrm{C}$)	A	0.3		0.36		0.70 $\pm 10 \%$	0.81 $\pm 10 \%$	
	Static friction torque	$\mathrm{N} \cdot \mathrm{m}$ (minimum)	0.29		1.27		2.5	7.8	
	Rise time for holding torque	ms (max.)	35		50				
	Release time	ms (max)	20		15				
	Time Rating		Continuous						
	Insulation class		Type B					Type F	
	Ambient operating/ storage tempe	rature	0 to $40^{\circ} \mathrm{C} /-20$ to $65^{\circ} \mathrm{C}$						
	Ambient operating/ storage humid		20 to 80\% (non-condensing)					20 to 85\% (non-condensing)	
	Vibration class		V-15						
	Insulation resistance		$20 \mathrm{M} \Omega$ min. at 500 VDC between the power terminals and FG terminal						
	Enclosure		Totally-enclosed, self-cooling, IP67 (excluding shaft opening)						
	Vibration resistance		Vibration acceleration $49 \mathrm{~m} / \mathrm{s}^{2}$						
	Mounting		Flange-mounted						

${ }^{* 1}$ Applicable load inertia: The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.

Torque-speed characteristics

R88M-K10030H/T (100 W)

R88M-K75030H/T (750 W)

R88M-K20030H/T (200 W)

R88M-K1K030H/T (1 kW)

R88M-K1K530H/T (1.5 kW)

Standard servo motors 3000 r/min, 400 V

Ratings and specifications

${ }^{* 1}$ Applicable load inertia: The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.

Torque-speed characteristics

R88M-K75030F/C (750 W)

| (N-M) | | Power supply voltage
 dropped by 10\% |
| :---: | :---: | :---: | :---: | :---: |

R88M-K2K030F/C (2 kW)					
($\mathrm{N}-\mathrm{M}$)			Power supply voltage dropped by 10%		
20	19.1		(3300)	19.1(3700)	
10	Momentary operation range				
	6.37		6.37		
	Continuous operation range \triangle 2.0				
0	1000	2000	3000	4000	

R88M-K1K030F/C (1 kW)

R88M-K3K030F/C (3 kW)

R88M-K1K530F/C (1.5 kW)

R88M-K4K030F/C (4 kW)
(N-M)

R88M-K5K030F/C (5 kW)

(N-M)

Standard servo motors 2000 r/min, 230 V/400 V

Ratings and specifications

Voltage		230 V		400 V							
Servo motor model R88M-K	20-bit incremental encoder	1K020H-■	1K520H-	40020F--	60020F--	1K020F--	1K520F-	2K020F-	3K020F--	4K020F-	5K020F-]
	17-bit absolute encoder	1K020T- \square	1K520T-	40020C-	60020C--	1K020C- \square	1K520C-]	2K020C-	3K020C--	4K020C-	5K020C-7
Rated output	W	1000	1500	400	600	1000	1500	2000	3000	4000	5000
Rated torque	N.m	4.77	7.16	1.91	2.86	4.77	7.16	9.55	14.3	19.1	23.9
Instantaneous peak torque	N.m	14.3	21.5	5.73	8.59	14.3	21.5	28.7	43	57.3	71.6
Rated current	A (rms)	5.7	9.4	1.2	1.5	2.8	4.7	5.9	8.7	10.6	13
Instantaneous max. current	A (rms)	24	40	4.9	6.5	12	20	25	37	45	55
Rated speed	min^{-1}	2000									
Max. speed	min^{-1}	3000									
Torque constant	N.m/A	0.63	0.58	1.27	1.38	1.27	1.16	1.27	1.18	1.40	1.46
Rotor moment of inertia (JM)	$\begin{aligned} & \mathrm{kg} \cdot \mathrm{~m}^{2} \times 10^{-4} \text { (without } \\ & \text { brake) } \end{aligned}$	4.60	6.70	1.61	2.03	4.60	6.70	8.72	12.9	37.6	48
	$\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}$ (with brake)	5.90	7.99	1.90	2.35	5.90	7.99	10	14.2	38.6	48.8
Max. load moment of inertia (JL)	Multiple of (JM)	10^{+1}									
Rated power rate	kW/s (without brake)	49.5	76.5	22.7	40.3	49.5	76.5	105	159	97.1	119
	kW/s (with brake)	38.6	64.2	19.2	34.8	38.6	64.2	91.2	144	94.5	117
Allowable radial load	N	490							784		
Allowable thrust load	N	196							343		
Approx. mass	kg (without brake)	5.2	6.7	3.1	3.5	5.2	6.7	8	11	15.5	18.6
	kg (with brake)	6.7	8.2	4.1	4.5	6.7	8.2	9.5	12.6	18.7	21.8
${ }_{0}$ Rated voltage		24 VDC $\pm 10 \%$									
- Holding brake moment inertia	(J) $\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}$	1.35								4.7	
T0. Power consumption ($20^{\circ} \mathrm{C}$)	W	14	19	17		14	19		22	31	
$\begin{aligned} & \text { Current consumption } \\ & 0.0 \\ & \left(20^{\circ} \mathrm{C}\right) \end{aligned}$	A	0.59 $\pm 10 \%$	0.79 $\pm 10 \%$	0.70 $\pm 10 \%$		0.59 $\pm 10 \%$	0.79 $\pm 10 \%$		0.90 $\pm 10 \%$	1.3 $\pm 10 \%$	$1.3 \pm 10 \%$
Static friction torque	N.m (minimum)	4.9	13.7	2.5		4.9	13.7		16.2	24.5	
$\stackrel{\sim}{\sim}$	ms (max.)	80	100	50		80	100		110	80	
- Release time	ms (max)	70	50	15		70	50			25	
Time Rating		Continuous									
\sim Insulation class		Type F									
- $\frac{\sim}{\sim}$ Ambient operating/ storage temperature		0 to $40^{\circ} \mathrm{C} /-20$ to $85^{\circ} \mathrm{C}$									
¢00 Ambient operating/ storage humidity		20\% to 85\% (non-condensing)									
- ${ }^{\text {dx }}$ Vibration class		V-15									
\% Insulation resistance		$20 \mathrm{M} \Omega$ min. at 500 VDC between the power terminals and FG terminal									
- 0 Enclosure		Totally-enclosed, self-cooling, IP67 (excluding shaft opening)									
\propto Vibration resistance		Vibration acceleration $49 \mathrm{~m} / \mathrm{s}^{2}$									
Mounting		Flange-mounted									

${ }^{* 1}$ Applicable load inertia: The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.

Torque-speed characteristics

R88M-K1K020H/T (230V, 1 kW)

R88M-K1K520H/T (230V, 1.5 kW)

 (N-M)

R88M-K40020F/C (400V, 400 W) (N-M)

R88M-K2K02OF/C (400V, 2 kW) (N-M)

R88M-K60020F/C (400V, 600 W)
(N-M)

R88M-K3K020F/C (400V, 3 kW) (N-M)

R88M-K1K020F/C (400V, 1 kW) ($\mathrm{N}-\mathrm{M}$)

R88M-K4K020F/C (400V, 4 kW)

R88M-K1K520F/C (400V, 1.5 kW$)$ N-M

R88M-K5K020F/C (400V, 5 kW) ($\mathrm{N}-\mathrm{M}$)

Standard servo motors 1500 r/min, 400 V

Ratings and specifications

Applied voltage			400 V		
Servo motor model R88M-K \square		17-bit absolute encoder	7K515C-■	11K015C- \square	15K015C-
Rated output		W	7500	11000	15000
Rated torque		N.m	47.8	70.0	95.5
Instantaneous peak torque		N.m	119.0	175.0	224.0
Rated current		A (rms)	22.0	27.1	33.1
Instantaneous max. current		A (rms)	83	101	118
Rated speed		min^{-1}	1500		
Max. speed		min^{-1}	3000	2000	
Torque constant		N.m/A	1.54	1.84	2.10
Rotor moment of inertia (JM)		$\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}$ (without brake)	101	212	302
		$\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}$ (with brake)	107	220	311
Allowable load moment of inertia (JL)		Multiple of (JM)	10^{4}		
Rated power rate		kW/s (without brake)	226	231	302
		kW/s (with brake)	213	223	293
Allowable radial load		N	1176	2254	
Allowable thrust load		N	490	686	
Approx. mass		kg (without brake)	36.4	52.7	70.2
		kg (with brake)	40.4	58.9	76.3
	Rated voltage		$24 \mathrm{VDC} \pm 10 \%$		
	Holding brake moment of inertia $\mathrm{J} \mathrm{Jg} \cdot \mathrm{m}^{2} \times 10^{-4}$		4.7	7.1	
	Power consumption (at $20^{\circ} \mathrm{C}$)	W	34	26	
	Current consumption (at $20^{\circ} \mathrm{C}$)	A	1.4 $\pm 10 \%$	1.08 $\pm 10 \%$	
	Static friction torque	N.m (minimum)	58.8	100	
	Rise time for holding torque	ms (max.)	150	300	
	Release time	ms (max)	50		
Time Rating			Continuous		
00000000000000000	Insulation class		Type F		
	Ambient operating/ storage temperature		0 to $40^{\circ} \mathrm{C} /-20$ to $65^{\circ} \mathrm{C}$		
	Ambient operating/ storage humidity		20\% to 85\% RH (non-condensing)		
	Vibration class		V-15		
	Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. at 500 VDC between the power terminals and FG terminal		
	Enclosure		Totally-enclosed, self-cooling, IP67 (excluding shaft opening)		
	Vibration resistance		Vibration acceleration $49 \mathrm{~m} / \mathrm{s}^{2}$		
	Mounting		Flange-mounted		

${ }^{* 1}$ Applicable load inertia: The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.

Torque-speed characteristics

R88M-K7K515C (7.5 kW)

(N-M)		Power dropp	y voltage 10%
	119.0 (2200) 119.0 (2500)		
100	Momentary operation range',		
50	47.8 47.	(1500)	
	ntinuous ope	tion range	12.0
0	1000	2000	00 (r/min)

R88M-K15K015C (15 kW)

Standard servo motors 1000 r/min, 230 V/400 V

Ratings and specifications

${ }^{* 1}$ Applicable load inertia: The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.

Torque-speed characteristics

R88M-K4K510C

R88M-K2K010F/C

R88M-K6K010C

R88M-K3K010F/C

High inertia servo motors $3000 \mathrm{r} / \mathrm{min}$, 230 V
Ratings and specifications

*1 Applicable load inertia: The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.

Torque-speed characteristics

R88M-KH20030H/T ($230 \mathrm{~V}, 200 \mathrm{~W}$)

R88M-KH40030H/T ($230 \mathrm{~V}, 400 \mathrm{~W}$)

R88M-KH75030H/T ($230 \mathrm{~V}, 750 \mathrm{~W}$)

High inertia servo motors 2000 and 1500 r/min, 400 V
Ratings and specifications

R/min, Voltage		2000r/min, 400 V						$\begin{aligned} & 1500 \mathrm{r} / \mathrm{min}, \\ & 400 \mathrm{~V} \end{aligned}$
Servo motor modelR88M-KH \square	20-bit incremental encoder	1K020F- \square	1K520F- \square	2K020F-■	3K020F-■	4K020F- \square	5K020F-■	
	17-bit absolute encoder	1K020C- \square	1K520C- \square	2K020C- \square	3K020C-■	4K020C- \square	5K020C-■	7K515C-
Rated output	W	1000	1500	2000	3000	4000	5000	7500
Rated torque	$\mathrm{N} \cdot \mathrm{m}$	4.77	7.16	9.55	14.3	19.1	23.9	47.8
Instantaneous peak torque	$\mathrm{N} \cdot \mathrm{m}$	14.3	21.5	28.6	43.0	57.3	71.6	119
Rated current	A (rms)	2.9	4.7	5.5	8.0	10.5	13.0	22.0
Instantaneous max. current	A (rms)	12	20	24	34	45	55	83
Rated speed min^{-1}		2000						1500
Max. speed	min^{-1}	3000						3000
Torque constant	N.m/A	1.27	1.16	1.31	1.34	1.38	1.39	1.54
Rotor moment of inertia (JM)	$\begin{aligned} & \mathrm{kg} \cdot \mathrm{~m}^{2} \times 10^{-4} \text { (without } \\ & \text { brake) } \end{aligned}$	24.7	37.1	57.8	90.2	112	162	273
	$\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}$ (with brake)	26.0	38.4	62.9	95.3	117	167	279
Max. load moment of inertia (JL)	Multiple of (JM)	5^{11}						
Rated power rate	kW/s (without brake)	9.2	13.8	15.8	22.7	32.5	35.1	86.7
	kW/s (with brake)	8.8	13.4	14.5	21.5	31.1	34.1	85.1
Allowable radial load	N	490		784				1176
Allowable thrust load	N	196		343				490
Approx. mass	kg (without brake)	6.7	8.6	12.2	16.0	18.6	23.0	42.3
	kg (with brake)	8.1	10.1	15.5	19.2	21.8	26.2	46.2
\sim Rated voltage		24 VDC $\pm 10 \%$						
. Holding brake moment inertia	(J) $\mathrm{kg} \cdot \mathrm{m}^{2} \times 10^{-4}$	1.35		31.4				
\%0w Power consumption ($20^{\circ} \mathrm{C}$)	W	14	19					34
$\begin{aligned} & \text { Current consumption } \\ & 0.0 \\ & \hline 00 \\ & \hline 0 \end{aligned}\left(20^{\circ} \mathrm{C}\right)$	A	0.59 $\pm 10 \%$	0.79 $\pm 10 \%$	1.30 $\pm 10 \%$				1.40 $\pm 10 \%$
$\stackrel{\sim}{0}$ Static friction torque	N.m (minimum)	4.9	13.7	24.5				58.8
毞 Rise time for holding torque	ms (max.)	80	100	80				150
\pm Release time	ms (max)	70	50	25				50
Time Rating		Continuous						
¢ Insulation class		Type F						
- Ambient operating/ storage temperature		0 to $40^{\circ} \mathrm{C} /-20$ to $65^{\circ} \mathrm{C}$						
O¢ ${ }_{0}$ Ambient operating/ storage humidity		20\% to 85\% RH (non-condensing)						
- Vibration class		V-15						
\% Insulation resistance		$20 \mathrm{M} \Omega$ min. at 500 VDC between the power terminals and FG terminal						
\% Enclosure		Totally-enclosed, self-cooling, IP67 (excluding shaft opening)						
\propto Vibration resistance		Vibration acceleration $49 \mathrm{~m} / \mathrm{s}^{2}$						
Mounting		Flange-mounted						

${ }^{* 1}$ Applicable load inertia: The operable load inertia ratio (load inertia/rotor inertia) depends on the mechanical configuration and its rigidity. For a machine with high rigidity, operation is possible even with high load inertia. Select an appropriate motor and confirm that operation is possible.

Torque-speed characteristics

R88M-KH4K020F/C (400V, 4 kW)

R88M-KH1K520F/C (400V, 1.5 kW)

R88M-KH5K02OFIC (400V, 5 kW)

R88M-KH2K020F/C (400V, 2 kW)

R88M-KH3K020F/C (400V, 3 kW) (N-M)

R88M-KH7K515C (7.5 kW)

Dimensions

Standard servo motors

Type 3000 r/min motors ($230 \mathrm{~V}, 50$ to 100 W)

Dimensions (mm)	Without brake		With brake		LN	Shaft end dimensions	Approx. mass (kg)	
Model	LL	LM	LL	LM		Tap \times Depth	Without brake	With brake
R88M-K05030(H/T)- \square S2	72	48	102	78	23	M3 $\times 6 \mathrm{~L}$	0.32	0.53
R88M-K10030(H/T)- \square S2	92	68	122	98	43		0.47	0.68

Type 3000 r/min motors ($230 \mathrm{~V}, 200$ to 750 W)

Dimensions (mm)	Without brake			With brake			LR	Flange surface						Shaft end dimensions							Approx. mass (kg)	
Model	LL	LM	KL1	LL	LM	KL1		LB	LC	LD	LE	LG	LZ	S	K	QK	H	B	T	$\begin{aligned} & \text { Tap } \times \\ & \text { Dath } \end{aligned}$	Without brake	With brake
R88M-K20030(H/T)-■S2	79.5	56.5	52.5	116	93	52.5	30	$50^{\text {h7 }}$	60	70	3	6.5	4.5	$11^{\text {n6 }}$	20	18	8.5	$4^{\text {n9 }}$	4	M $4 \times 8 \mathrm{~L}$	0.82	1.3
R88M-K40030(H/T)-■S2	99	76	52.5	135.5	112.5	52.5								$14^{\text {h6 }}$	25	22.5	11	$5^{\text {h9 }}$	5	M5 \times	1.2	1.7
R88M-K75030(H/T)-■S2	112.2	86.2	60	148.2	122.2	61.6	35	$70^{\text {h/ }}$	80	90		8	6	$19^{\text {h6 }}$		22	15.5	$6^{\text {h9 }}$	6	10L	2.3	3.1

Type $3000 \mathrm{r} / \mathrm{min}$ motors (230 V , 1 to $1.5 \mathrm{~kW} / 400 \mathrm{~V}, 750 \mathrm{~W}$ to 5 kW)

Dimensions (mm)		Without brake					With brake					LR	Flange surface						Shaft end dimensions							Approx. mass (kg)	
	Model R88M-K \square	LL	LM	KB1	KB2	KL1	LL	LM	KB1	KB2	KL1		LA	LB	LC	LD	LE	LG	S	Tap \times Depth	K	QK	H	B			¢
230	1K030(H/T)-■S2	141	97	66	119	101	168	124	66	146	101	55	135	$95^{\text {h7 }}$	100	115	3	10	$19^{\text {h6 }}$	$\begin{gathered} \text { M5× } \\ 12 \mathrm{~L} \end{gathered}$	45	42	15.5	$6{ }^{\text {h9 }}$	6	3.5	4.5
	1K530(H/T)-■S2	159.5	115.5	84.5	137.5		186.5	142.5	84.5	164.5																4.4	5.4
400	75030(F/C)- \square S2	131.5	87.5	56.5	109.5		158.5	114.5	53.5	136.5	103															3.1	4.1
	1K030(F/C)- \square S2	141	97	66	119		168	124	63	146																3.5	4.5
	1K530(F/C)-■S2	159.5	115.5	84.5	137.5		186.5	142.5	81.5	164.5																4.4	5.4
	2K030(F/C)-■S2	178.5	134.5	103.5	156.5		205.5	161.5	100.5	183.5																5.3	6.3
	3K030(F/C)-■S2	190	146	112	168	113	215	171	112	193	113		162	$110^{\text {h/ }}$		145		12	$22^{\text {n6 }}$			41	18	$8^{\text {h9 }}$	7	8.3	9.4
	4K030(F/C)-■S2	208	164	127	186	118	233	189	127	211	118	65	165		130		6		$24^{\text {n6 }}$	$\begin{gathered} \text { M8× } \\ 20 \mathrm{~L} \end{gathered}$	55	51	20		7	11	12.6
	5K030(F/C)-■S2	243	199	162	221		268	224	162	246																14	16

Type $2000 \mathrm{r} / \mathrm{min}$ motors (230 V , 1 to $1.5 \mathrm{~kW} / 400 \mathrm{~V}, 400 \mathrm{~W}$ to 5 kW)

Dim	ensions (mm)	Without brake					With brake					LR	Flange surface							Shaft end dimensions							Approx. mass (kg)	
$\begin{aligned} & \hline 0 \\ & \hline \mathbf{0} \\ & \mathbf{\#} \\ & 0 \\ & \hline \end{aligned}$	Model R88M-K	LL	LM	KB1	KB2	KL1	LL	LM	KB1	KB2	KL1		LA	LB	LC	LD	LE	LG	LZ	S	-	K	QK	H	B			¢
230	1K020(H/T)- $\square \mathrm{S} 2$	138	94	60	116	116	163	119	60	141	116	55	165	$110^{\text {h/ }}$	130	145	6	12	9	$22^{\text {n6 }}$	M5x	45	41	18	$8^{\text {n9 }}$	7	5.2	6.7
	1K520(H/T)- \square S2	155.5	111.5	77.5	133.5		180.5	136.5	77.5	158.5																	6.7	8.2
400	40020(F/C)-■S2	131.5	87.5	56.5	109.5	101	158.5	114.5	53.5	136.5	103		135	$95^{\text {h/ }}$	100	115	3	10		$19^{\text {h6 }}$			42	15.5	$6^{\text {n9 }}$	6	3.1	4.1
	60020(F/C)- \square S2	141	97	66	119		168	124	63	146																	3.5	4.5
	1K020(F/C)- \square S2	138	94	60	116	116	163	119	57	141	118		165	$110^{\text {h/ }}$	130	145	6	12		$22^{\text {n6 }}$			41	18	$8^{\text {n9 }}$	7	5.2	6.7
	1K520(F/C)- \square S2	155.5	111.5	77.5	133.5		180.5	136.5	74.5	158.5																	6.7	8.2
	2K020(F/C)- \square S2	173	129	95	151		198	154	92	176																	8	9.5
	3K020(F/C)- \square S2	208	164	127	186	118	233	189	127	211		65								$24^{\text {n6 }}$	$\begin{aligned} & \hline \text { M8x } \\ & \text { 20L } \end{aligned}$	55	51	20			11	12.6
	4K020(F/C)- \square S2	177	133	96	155	140	202	158	96	180	140	70	233	$114.3{ }^{\text {h7 }}$	176	200	3.2	18	13.5	$35^{\text {n6 }}$	M12		50	30	$10^{\text {h9 }}$	8	15.5	18.7
	5K020(F/C)- \square S2	196	152	115	174		221	177	115	199											$\begin{gathered} \times \\ 25 \mathrm{~L} \end{gathered}$						18.6	21.8

Type $1500 \mathrm{r} / \mathrm{min}$ motors ($400 \mathrm{~V}, 7.5 \mathrm{~kW}$)

Dimensions (mm)		Without brake							With brake							Approx. mass (kg)	
Voltage	Model	LL	LM	KB1	KB2	L1	L2	L3	LL	LM	KB1	KB2	L1	L2	L3	Whithout brake	With brake
	R88M-K \square																
400	7K515C-■S2	312	268	219	290	117.5	117.5	149	337	293	253	315	117.5	152.5	183	36.4	40.4

Type $1500 \mathrm{r} / \mathrm{min}$ motors (400 V , 11 to 15 kW)

Dimensions (mm)		Without brake							With brake							Approx. mass (kg)	
Voltage	Model	LL	LM	KB1	KB2	L1	L2	L3	LL	LM	KB1	KB2	L1	L2	L3	Whithout brake	With brake
	R88M-K \square																
400	11K015C- \square S2	316	272	232	294	124.5	124.5	162	364	320	266	342	124.5	159.5	196	52.7	58.9
	15K015C- \square S2	384	340	300	362	158.5	158.5	230	432	388	334	410	158.5	193.5	264	70.2	76.3

Type $1000 \mathrm{r} / \mathrm{min}$ motors ($230 \mathrm{~V}, 900 \mathrm{~W} / 400 \mathrm{~V}$, 900 W to 3 kW)

Dim	nsions (mm)	Without brake					With brake					LR	Flange surface							Shaft end dimensions							$\begin{array}{\|c} \hline \text { mpprox. } \\ \text { (kg) } \end{array}$	
$\begin{aligned} & \mathbb{0} \\ & \frac{\pi}{0} \\ & > \end{aligned}$	Model R88M-K \square	LL	LM	KB1	KB2	KL1	LL	LM	KB1	KB2	KL1		LA	LB	LC	LD	LE	LG	LZ	S		K	QK	H	B			去遃
230	90010(H/T)- \square S2	155.5	111.5	77.5	133.5	116	180.5	136.5	77.5	158.5	116	70	165	$110^{\text {h7 }}$	130	145	6	12	9	$22^{\text {n6 }}$	$\begin{aligned} & \text { M5x } \\ & 121 \end{aligned}$	45	41	18	$8^{\text {n9 }}$	7	6.7	8.2
400	90010(F/C)- \square S2								74.5		118																	
	2K010(F/C)-■S2	163.5	119.5	82.5	141.5	140	188.5	144.5	82.5	166.5	140	80	233	$114.3{ }^{\text {h7 }}$	176	200	$\begin{array}{\|l\|l\|} \hline 3.2 & 1 \\ \hline \end{array}$	18	13.5	$35^{n 6}$	$\begin{gathered} \hline \text { M12x } \\ \text { 25L } \end{gathered}$	55	50	30	$\mathrm{j}^{\text {h9 }}$		$\begin{array}{\|l\|l\|} \hline 8 & 14 \\ \cline { 2 - 2 } & 20 \\ \hline \end{array}$	17.5
	3K010(F/C)-■S2	209.5	165.5	128.5	187.5		234.5	190.5	128.5	212.5																	23.5	

Type 1000 r/min motors ($400 \mathrm{~V}, 4.5 \mathrm{~kW}$)

Dimensions (mm)		Without brake						With brake						Approx. mass (Kg)	
Voltage	Model	LL	LM	KB1	KB2	L1	L2	LL	LM	KB1	KB2	L1	L2	Without brake	With brake
	R88M-K \square														
400	4K510C-■S2	266	222	185	244	98	98	291	247	185	269	98	133	29.4	33.3

Type 1000 r/min motors ($400 \mathrm{~V}, 6 \mathrm{~kW}$)

Dimensions (mm)		Without brake							With brake							Approx. mass (Kg)	
Voltage	Model	LL	LM	KB1	KB2	L1	L2	L3	LL	LM	KB1	KB2	L1	L2	L3	Without brake	With brake
	R88M-K \square																
400	6K010C-■S2	312	268	219	290	117.5	117.5	149	337	293	253	315	117.5	152.5	183	36.4	40.4

High inertia servo motors
Type 3000 r/min motors ($230 \mathrm{~V}, 200 \mathrm{~W}$ to 750 W)

Dimensions (mm)		Without brake		With brake		KB1	LR	Flange surface					Shaft end dimensions							Approx. mass (kg)	
$\begin{aligned} & \hline \text { O } \\ & \text { \#\# } \\ & \hline 0 \\ & > \end{aligned}$	Model R88M-KH	L	LL	L	LL			LA	LB	LC	LG	LZ	S	Tap x Depth	K	QK	H	B	T	苓	
230	20030(H/T)-■S2-D	129	99	165.5	135.5	42	30	70	$50^{\text {n/ }}$	60	6.5	4.5	$11^{\text {n6 }}$	M4×8L	20	18	8.5	$4^{\text {n9 }}$	4	0.96	1.4
	40030(H/T)-■S2-D	148.5	118.5	185	155	61.5							$14^{\text {n6 }}$	M $5 \times 10 \mathrm{~L}$	25	22.5	11	$5^{\text {n9 }}$	5	1.4	1.8
	75030(H/T)-■S2-D	162.2	127.2	199.2	164.2	67.2	35	90	$70^{\text {h7 }}$	80	8	6	$19^{\text {h6 }}$	M $5 \times 10 \mathrm{~L}$	25	22	15.5	$6^{\text {n9 }}$	6	2.5	3.3

Type $2000 \mathrm{r} / \mathrm{min}$ motors (400 V , 1 kW to 5 kW)

Dim	ensions (mm)	Without brake					With brake					LR	Flange surface							Shaft end dimensions						Approx. mass (kg)	
$\begin{aligned} & \hline \text { O } \\ & \text { \# } \\ & \hline 0 \\ & \hline \end{aligned}$	Model R88M-KH	LL	LM	KB1	KB2	KL1	LL	LM	KB1	KB2	KL1		LA	LB	LC	LD	LE	LG	LZ	S	K	QK	H	B			¢
400	1K020(F/C)- \square S1	173	129	95	151	116	201	157	92	179	118	70	165	$110^{\text {h7 }}$	130	145	6	12	9	$22^{\text {n6 }}$	45	41	18	$8^{\text {n9 }}$	7	6.7	8.1
	1K520(F/C)- \square S1	190.5	146.5	112.5	168.5		218.5	174.5	109.5	196.5																8.6	10.1
	2K020(F/C)- \square S1	177	133	96	155	140	206	162	96	184	140	80	233	$114.3{ }^{\text {h/ }}$	176	200	3.2	18	13.5	$35^{\text {n6 }}$	55	50	30	$10^{\text {h9 }}$	8	12.2	15.5
	3K020(F/C)- \square S1	196	152	115	174		225	181	115	203																16.0	19.2
	4K020(F/C)- \square S1	209.5	165.5	128.5	187.5		238.5	194.5	128.5	216.5																18.6	21.8
	5K020(F/C)- \square S1	238.5	194.5	157.5	216.5		267.5	223.5	157.5	245.5																23.0	26.2

Type $1500 \mathrm{r} / \mathrm{min}$ motors ($400 \mathrm{~V}, 7.5 \mathrm{~kW}$)

Dimensions (mm)		Without brake							With brake							Approx. mass (kg)	
Voltage	Model	LL	LM	KB1	KB2	L1	L2	L3	LL	LM	KB1	KB2	L1	L2	L3	Without brake	With brake
	R88M-KH \square																
400	7K515C- \square S1	357	313	264	335	146.5	146.5	194	382	338	298	360	146.5	181.5	228	42.3	46.2

Ordering information

Note: The symbols (1)(2(3)... show the recommended sequence to select the servo motor and cables Servo motor
(1) Select motor from R88M-K or R88M-KH families using motor tables in next pages.

Servo drive

(2) Refer to Accurax G5 servo drive chapter for detailed drive specifications and selection of drive accessories.

Standard servo motors

Servo motors 3000 r/min (50 to 5000 W)

Servo motors $2000 \mathrm{r} / \mathrm{min}$ (1 to 5 kW)

Symbol	Specifications					Servo motor model	Compatible servo drives (2) G5 EtherCAT
	Voltage	Encoder and design		Rated torque	Capacity		
(1)	230 V	Incremental encoder (20 bit) Straight shaft with key and tap	Without brake	4.77 Nm	1000 W	R88M-K1K020H-S2	R88D-KN10H-ECT
				7.16 Nm	1500 W	R88M-K1K520H-S2	R88D-KN15H-ECT
			With brake	4.77 Nm	1000 W	R88M-K1K020H-BS2	R88D-KN10H-ECT
				7.16 Nm	1500 W	R88M-K1K520H-BS2	R88D-KN15H-ECT
		Absolute encoder (17 bit)	Without brake	4.77 Nm	1000 W	R88M-K1K020T-S2	R88D-KN10H-ECT
				7.16 Nm	1500 W	R88M-K1K520T-S2	R88D-KN15H-ECT
		Straight shaft with key and tap	With brake	4.77 Nm	1000 W	R88M-K1K020T-BS2	R88D-KN10H-ECT
				7.16 Nm	1500 W	R88M-K1K520T-BS2	R88D-KN15H-ECT
	400 V	Incremental encoder (20 bit) Straight shaft with key and tap	Without brake	1.91 Nm	400 W	R88M-K40020F-S2	R88D-KN06F-ECT
				2.86 Nm	600 W	R88M-K60020F-S2	R88D-KN06F-ECT
				4.77 Nm	1000 W	R88M-K1K020F-S2	R88D-KN10F-ECT
				7.16 Nm	1500 W	R88M-K1K520F-S2	R88D-KN15F-ECT
				9.55 Nm	2000 W	R88M-K2K020F-S2	R88D-KN20F-ECT
				14.3 Nm	3000 W	R88M-K3K020F-S2	R88D-KN30F-ECT
				19.1 Nm	4000 W	R88M-K4K020F-S2	R88D-KN50F-ECT
				23.9 Nm	5000 W	R88M-K5K020F-S2	R88D-KN50F-ECT
			With brake	1.91 Nm	400 W	R88M-K40020F-BS2	R88D-KN06F-ECT
				2.86 Nm	600 W	R88M-K60020F-BS2	R88D-KN06F-ECT
				4.77 Nm	1000 W	R88M-K1K020F-BS2	R88D-KN10F-ECT
				7.16 Nm	1500 W	R88M-K1K520F-BS2	R88D-KN15F-ECT
				9.55 Nm	2000 W	R88M-K2K020F-BS2	R88D-KN20F-ECT
				14.3 Nm	3000 W	R88M-K3K020F-BS2	R88D-KN30F-ECT
				19.1 Nm	4000 W	R88M-K4K020F-BS2	R88D-KN50F-ECT
				23.9 Nm	5000 W	R88M-K5K020F-BS2	R88D-KN50F-ECT
		Absolute encoder (17 bit) Straight shaft with key and tap	Without brake	1.91 Nm	400 W	R88M-K40020C-S2	R88D-KN06F-ECT
				2.86 Nm	600 W	R88M-K60020C-S2	R88D-KN06F-ECT
				4.77 Nm	1000 W	R88M-K1K020C-S2	R88D-KN10F-ECT
				7.16 Nm	1500 W	R88M-K1K520C-S2	R88D-KN15F-ECT
				9.55 Nm	2000 W	R88M-K2K020C-S2	R88D-KN20F-ECT
				14.3 Nm	3000 W	R88M-K3K020C-S2	R88D-KN30F-ECT
				19.1 Nm	4000 W	R88M-K4K020C-S2	R88D-KN50F-ECT
				23.9 Nm	5000 W	R88M-K5K020C-S2	R88D-KN50F-ECT
			With brake	1.91 Nm	400 W	R88M-K40020C-BS2	R88D-KN06F-ECT
				2.86 Nm	600 W	R88M-K60020C-BS2	R88D-KN06F-ECT
				4.77 Nm	1000 W	R88M-K1K020C-BS2	R88D-KN10F-ECT
				7.16 Nm	1500 W	R88M-K1K520C-BS2	R88D-KN15F-ECT
				9.55 Nm	2000 W	R88M-K2K020C-BS2	R88D-KN20F-ECT
				14.3 Nm	3000 W	R88M-K3K020C-BS2	R88D-KN30F-ECT
				19.1 Nm	4000 W	R88M-K4K020C-BS2	R88D-KN50F-ECT
				23.9 Nm	5000 W	R88M-K5K020C-BS2	R88D-KN50F-ECT

Servo motors $1500 \mathrm{r} / \mathrm{min}$ (7.5 to 15 KW)

Symbol	Specifications					Servo motor model	Compatible servo drives (2)
	Voltage	Encoder and design		Rated torque	Capacity		G5 EtherCAT
(1)	400 V	Absolute encoder (17 bit) Straight shaft with key and tap	Without brake	47.8 Nm	7500 W	R88M-K7K515C-S2	R88D-KN75F-ECT
				70.0 Nm	11000 W	R88M-K11K015C-S2	R88D-KN150F-ECT
				95.5 Nm	15000 W	R88M-K15K015C-S2	R88D-KN150F-ECT
				47.8 Nm	7500 W	R88M-K7K515C-BS2	R88D-KN75F-ECT
			brake	70.0 Nm	11000 W	R88M-K11K015C-BS2	R88D-KN150F-ECT
				95.5 Nm	15000 W	R88M-K15K015C-BS2	R88D-KN150F-ECT

Servo motors 1000 r/min (900 to 6000 W)

Symbol	Specifications					Servo motor model	Compatible servo drives (2)
	Voltage	Encoder and design		Rated torque	Capacity		G5 EtherCAT
(1) 900 W to 3 kW	230 V	Incremental encoder (20 bit) Straight shaft with key and tap	No brake	8.59 Nm	900 W	R88M-K90010H-S2	R88D-KN15H-ECT
			With brake	8.59 Nm	900 W	R88M-K90010H-BS2	R88D-KN15H-ECT
		Absolute encoder (17 bit) Straight shaft with key and tap	No brake	8.59 Nm	900 W	R88M-K90010T-S2	R88D-KN15H-ECT
			With brake	8.59 Nm	900 W	R88M-K90010T-BS2	R88D-KN15H-ECT
	400 V	Incremental encoder (20 bit) Straight shaft with key and tap	No brake	8.59 Nm	900 W	R88M-K90010F-S2	R88D-KN15F-ECT
				19.1 Nm	2000 W	R88M-K2K010F-S2	R88D-KN30F-ECT
				28.7 Nm	3000 W	R88M-K3K010F-S2	R88D-KN50F-ECT
			With brake	8.59 Nm	900 W	R88M-K90010F-BS2	R88D-KN15F-ECT
				19.1 Nm	2000 W	R88M-K2K010F-BS2	R88D-KN30F-ECT
				28.7 Nm	3000 W	R88M-K3K010F-BS2	R88D-KN50F-ECT
		Absolute encoder (17 bit) Straight shaft with key and tap	No brake	8.59 Nm	900 W	R88M-K90010C-S2	R88D-KN15F-ECT
				19.1 Nm	2000 W	R88M-K2K010C-S2	R88D-KN30F-ECT
				28.7 Nm	3000 W	R88M-K3K010C-S2	R88D-KN50F-ECT
				43.0 Nm	4500 W	R88M-K4K510C-S2	R88D-KN50F-ECT
				57.3 Nm	6000 W	R88M-K6K010C-S2	R88D-KN75F-ECT
			With brake	8.59 Nm	900 W	R88M-K90010C-BS2	R88D-KN15F-ECT
				19.1 Nm	2000 W	R88M-K2K010C-BS2	R88D-KN30F-ECT
				28.7 Nm	3000 W	R88M-K3K010C-BS2	R88D-KN50F-ECT
				43.0 Nm	4500 W	R88M-K4K510C-BS2	R88D-KN50F-ECT
				57.3 Nm	6000 W	R88M-K6K010C-BS2	R88D-KN75F-ECT

High inertia servo motors

Servo motors 3000 r/min (200 to 750 W)

Symbol	Specifications					Servo motor model	$\begin{array}{\|l\|} \hline \text { Compatible servo drives (2) } \\ \hline \text { G5 EtherCAT } \\ \hline \end{array}$
	Voltage	Encoder and design		Rated torque	Capacity		
(1)	230 V	Incremental encoder (20 bit) Straight shaft with key and tap	Without brake	0.64 Nm	200 W	R88M-KH20030H-S2-D	R88D-KN02H-ECT
				1.3 Nm	400 W	R88M-KH40030H-S2-D	R88D-KN04H-ECT
				2.4 Nm	750 W	R88M-KH75030H-S2-D	R88D-KN08H-ECT
			With brake	0.64 Nm	200 W	R88M-KH20030H-BS2-D	R88D-KN02H-ECT
				1.3 Nm	400 W	R88M-KH40030H-BS2-D	R88D-KN04H-ECT
				2.4 Nm	750 W	R88M-KH75030H-BS2-D	R88D-KN08H-ECT
		Absolute encoder (17 bit) Straight shaft with key and tap	Without brake	0.64 Nm	200 W	R88M-KH20030T-S2-D	R88D-KN02H-ECT
				1.3 Nm	400 W	R88M-KH40030T-S2-D	R88D-KN04H-ECT
				2.4 Nm	750 W	R88M-KH75030T-S2-D	R88D-KN08H-ECT
			With brake	0.64 Nm	200 W	R88M-KH20030T-BS2-D	R88D-KN02H-ECT
				1.3 Nm	400 W	R88M-KH40030T-BS2-D	R88D-KN04H-ECT
				2.4 Nm	750 W	R88M-KH75030T-BS2-D	R88D-KN08H-ECT

Servo motors $2000 \mathrm{r} / \mathrm{min}$ (1 to 5 kW)

Symbol	Specifications					Servo motor model	Compatible servo drives (2)
	Voltage	Encoder and design		Rated torque	Capacity		G5 EtherCAT
(1)	400 V	Incremental encoder (20 bit) Shaft end with key	Without brake	4.77 Nm	1000 W	R88M-KH1K020F-S1	R88D-KN10F-ECT
				7.16 Nm	1500 W	R88M-KH1K520F-S1	R88D-KN15F-ECT
				9.55 Nm	2000 W	R88M-KH2K020F-S1	R88D-KN20F-ECT
				14.3 Nm	3000 W	R88M-KH3K020F-S1	R88D-KN30F-ECT
				19.1 Nm	4000 W	R88M-KH4K020F-S1	R88D-KN50F-ECT
				23.9 Nm	5000 W	R88M-KH5K020F-S1	R88D-KN50F-ECT
			With brake	4.77 Nm	1000 W	R88M-KH1K020F-BS1	R88D-KN10F-ECT
				7.16 Nm	1500 W	R88M-KH1K520F-BS1	R88D-KN15F-ECT
				9.55 Nm	2000 W	R88M-KH2K020F-BS1	R88D-KN20F-ECT
				14.3 Nm	3000 W	R88M-KH3K020F-BS1	R88D-KN30F-ECT
				19.1 Nm	4000 W	R88M-KH4K020F-BS1	R88D-KN50F-ECT
				23.9 Nm	5000 W	R88M-KH5K020F-BS1	R88D-KN50F-ECT
		Absolute encoder(17 bit)Shaft end with key	Without brake	4.77 Nm	1000 W	R88M-KH1K020C-S1	R88D-KN10F-ECT
				7.16 Nm	1500 W	R88M-KH1K520C-S1	R88D-KN15F-ECT
				9.55 Nm	2000 W	R88M-KH2K020C-S1	R88D-KN20F-ECT
				14.3 Nm	3000 W	R88M-KH3K020C-S1	R88D-KN30F-ECT
				19.1 Nm	4000 W	R88M-KH4K020C-S1	R88D-KN50F-ECT
				23.9 Nm	5000 W	R88M-KH5K020C-S1	R88D-KN50F-ECT
			With brake	4.77 Nm	1000 W	R88M-KH1K020C-BS1	R88D-KN10F-ECT
				7.16 Nm	1500 W	R88M-KH1K520C-BS1	R88D-KN15F-ECT
				9.55 Nm	2000 W	R88M-KH2K020C-BS1	R88D-KN20F-ECT
				14.3 Nm	3000 W	R88M-KH3K020C-BS1	R88D-KN30F-ECT
				19.1 Nm	4000 W	R88M-KH4K020C-BS1	R88D-KN50F-ECT
				23.9 Nm	5000 W	R88M-KH5K020C-BS1	R88D-KN50F-ECT

Servo motors 1500 r/min (7.5 kW)

Symbol	Specifications					Servo motor model	Compatible servo drives (2)
	Voltage	Encoder and design		Rated torque	Capacity		G5 EtherCAT
(1)	400 V	$\begin{aligned} & \text { Absolute encoder } \\ & \text { (17 bit) } \end{aligned}$	Without brake	47.8 Nm	7500 W	R88M-KH7K515C-S1	R88D-KN75F-ECT
		Shaft end with key	With brake	47.8 Nm	7500 W	R88M-KH7K515C-BS1	R88D-KN75F-ECT

Encoder cables

For absolute and incremental encoders

Symbol	Specifications		Model	Appearance
(3)	Encoder cable for servomotors R88M-K(050/100/200/400/750)30(H/T) \square	1.5 m	R88A-CRKA001-5CR-E	
		3 m	R88A-CRKA003CR-E	
		5 m	R88A-CRKA005CR-E	
		10 m	R88A-CRKA010CR-E	
		15 m	R88A-CRKA015CR-E	
		20 m	R88A-CRKA020CR-E	
	Encoder cable for servomotors R88M-KH(200/400/750)30(H/T) \square	3 m	R88A-CRWA003C-DE	
		5 m	R88A-CRWA005C-DE	
		10 m	R88A-CRWA010C-DE	
		15 m	R88A-CRWA015C-DE	
		20 m	R88A-CRWA020C-DE	
	Encoder cable for servomotors	1.5 m	R88A-CRKC001-5NR-E	
	R88M-K(1K0/1K5)30(H/T) \square	3 m	R88A-CRKC003NR-E	
	R88M-K(750/1K0/1K5/2K0/3K0/4K0/5K0)30(F/C)	5 m	R88A-CRKC005NR-E	
	R88M-K (7K5/11K0/15K0)15 \square	10 m	R88A-CRKC010NR-E	-
	R88M-K(900/2K0/3K0/4K5/6K0)10 \square	15 m	R88A-CRKC015NR-E	
	R88M-KH(1K0/1K5/2K0/3K0/4K0/5K0)20(F/C) R88M-KH7K515C \square	20 m	R88A-CRKC020NR-E	

Note: For servomotors fitted with an absolute encoder you have to add the extension battery cable R88A-CRGD0R3C \square (see below) or connect a backup battery in the CN1 I/O connector.
Absolute encoder battery cable (encoder extension cable only)

Power cables

Symbol	Specifications			Model	Appearance			
(5)	For 200 V servomotors R88M-K(050/100/200/400/750)30(H/T)- $\square \square$ S2 Note: for servomotors with brake R88M-K(050/100/200/400/ $750) 30(\mathrm{H} / \mathrm{T})-\mathrm{BS} 2$, the separate brake cable R88A-CAKA $\square \square \square$ BR-E is needed	Power cable only (without brake)	1.5 m	R88A-CAKA001-5SR-E				
			3 m	R88A-CAKA003SR-E				
			5 m	R88A-CAKA005SR-E				
			10 m	R88A-CAKA010SR-E				
			15 m	R88A-CAKA015SR-E				
			20 m	R88A-CAKA020SR-E				
	For 200 V servomotors R88M-KH (200/400/750)30(H/T)- \square S2	without brake	3 m	R88A-CAWA003S-DE				
			5 m	R88A-CAWA005S-DE				
			10 m	R88A-CAWA010S-DE				
			15 m	R88A-CAWA015S-DE				
			20 m	R88A-CAWA020S-DE				
		with brake	3 m	R88A-CAWA003B-DE				
			5 m	R88A-CAWA005B-DE				
			10 m	R88A-CAWA010B-DE				
			15 m	R88A-CAWA015B-DE				
			20 m	R88A-CAWA020B-DE				
	$\begin{aligned} & \text { For } 200 \mathrm{~V} \text { servomotors } \\ & \text { R88M-K(1K0/1K5)30(H/T)- } \square \square S 2 \\ & \text { R88M-K(1K0/1K5)20(H/T)- } \square \square \mathrm{S} 2 \\ & \text { R88M-K90010(H/T)- } \square \square \mathrm{S} 2 \end{aligned}$	without brake	1.5 m	R88A-CAGB001-5SR-E				
			3 m	R88A-CAGB003SR-E				
			5 m	R88A-CAGB005SR-E				
			10 m	R88A-CAGB010SR-E				
			15 m	R88A-CAGB015SR-E				
			20 m	R88A-CAGB020SR-E				
		with brake	1.5 m	R88A-CAGB001-5BR-E				
			3 m	R88A-CAGB003BR-E				
			5 m	R88A-CAGB005BR-E				
			10 m	R88A-CAGB010BR-E				
			15 m	R88A-CAGB015BR-E				
			20 m	R88A-CAGB020BR-E				

Brake cables (for 200 V 50 to 750 W servo motors and 400 V 6 to 15 kW servo motors)

Symbol	Specifications		Model	Appearance		
(6)	Brake cable only. For 200 V servo motors with brake R88M-K(050/100/200/400/750)30(H/T)-BS2	1.5 m	R88A-CAKA001-5BR-E			
		3 m	R88A-CAKA003BR-E			
		5 m	R88A-CAKA005BR-E			
		10 m	R88A-CAKA010BR-E			
		15 m	R88A-CAKA015BR-E			
		20 m	R88A-CAKA020BR-E			
	Brake cable only. For 400 V servo motors with brake R88M-K6K010C-BS2 R88M-K(7K5/11K0/15K0)15C-BS2 R88M-KH7K515C-BS1	1.5 m	R88A-CAGE001-5BR-E			
		3 m	R88A-CAGE003BR-E			
		5 m	R88A-CAGE005BR-E			
		10 m	R88A-CAGE0010BR-E			
		15 m	R88A-CAGE015BR-E			
		20 m	R88A-CAGE020BR-E			

Connectors for encoder, power and brake cables

Specifications		Applicable Servomotor	Model
Connectors for making encoder cables	Drive side (CN2)	All models	R88A-CNW01R
	Motor side	R88M-K(050/100/200/400/750)30(H/T) \square	R88A-CNK02R
	Motor side	R88M-KH(200/400/750) \square	SPOC-17H-FRON169
	Motor side	```R88M-K (1K0/1K5)30(H/T) \(\square\) R88M-K(750/1K0/1K5/2K0/3K0/4K0/5K0)30(F/C) R88M-K(400/600/1K0/1K5/2K0/3K0/4K0/5K0)20 \(\square\) R88M-K (900/2K0/3K0) \(10 \square\) R88M-K (4K5/6K0) \(10 \mathrm{C}-\square\) R88M-K(7K5/11K0/15K0)15C- \(\square\) R88M-KH(1K0/1K5/2K0/3K0/4K0/5K0/7K5) \(\square\)```	R88A-CNK04R
Connectors for making power cables	Motor side	R88M-K(050/100/200/400/750)30(H/T) \square	R88A-CNK11A
	Motor side	R88M-KH(200/400/750)30(H/T) \square	SPOC-06K-FSDN169
	Motor side	R88M-K(1K0/1K5)30(H/T)-S2 R88M-K(1K0/1K5)20(H/T)-S2 R88M-K90010(H/T)-S2 R88M-K(750/1K0/1K5/2K0)30(F/C)-S2, R88M-K(400/600/K0/1K5/2K0)20(F/C)-S2 R88M-K90010(F/C)-S2 R88M-KH(1K0/1K5)20(F/C)-S1 R88- 2 (K0/K)30	MS3108E20-4S
	Motor side	R88M-K(1K0/1K5)30(H/T)-BS2 R88M-K(1K0/1K5)20(H/T)-BS2 R88M-K90010(H/T)-BS2	MS3108E20-18S
	Motor side	```R88M-K(750/1K0/1K5/2K0/3K0/4K0/5K0)30(F/C)-BS2 R88M-K(400/600/1K0/1K5/2K0/3K0/4K0/5K0)20(F/C)-BS2 R88M-K(900/2K0/3K0)10(F/C)-BS2 R88M-K4K510C-BS2 R88M-KH(1K0/1K5/2K0/3K0/4K0/5KO)20(F/C)-BS1```	MS3108E24-11S
	Motor side	R88M-K(3KO/4KO/5KO)30(F/C)-S2 R88M-K(3K0/4KO/5KO)20(F/C)-S2 R88M-K(2K0/3KO)10(F/C)-S2 R88M-K4K510C-S2 R88M-KH(2KO/3K0/4K0/5K0)20(F/C)-S1	MS3108E22-22S
	Motor side	R88M-K6K010C- \square R88M-K(7K5/11K0/15K0)15C- \square R88M-KH7K515C- \square S1	MS3108E32-17S
Connector for brake cable	Motor side	R88M-K(050/100/200/400/750)30(H/T)-BS2	R88A-CNK11B
	Motor side	R88M-K6K010C-BS2 R88M-K(7K5/11K0/15K0)15C-BS2 R88M-KH7K515C-BS1	MS3108E14S-2S

Note: 1. All cables listed are flexible and shielded (except the R88A-CAKA $\square \square-B R-E$ which is only a flexible cable). 2. All connectors and cables listed have IP67 class (except R88A-CNW01R connector and R88A-CRGD0R3C cable).

Cat. No. SysCat_I100E-EN-04A In the interest of product improvement, specifications are subject to change without notice.

R88L-EC-FW/GW- \square

Accurax linear motor

New linear motors with optimised efficiency

Iron-core motors for high speed and high duty cycle operations and Ironless motors for cogging-free and high dynamic applications. Both motor and families deliver unparalleled accuracy and performance benefits.

- Ironless and iron-core types available
- High dynamic and precise positioning
- Compact and flat design iron-core motors
- Excellent force-to-weight ratio ironless motors
- Weight-optimised magnet track
- Optional digital hall-sensor and connectors
- Temperature sensors included

Ratings

- Iron-core motors - 48 to 760 N (2000 N peak force)
- Ironless motors - 29 to 423 N (2100 N peak force)

System configuration

Linear motor / Servo drive combination

Linear motor coil					Linear Servo drive	
					Accurax G5 EtherCAT model	
Type	Rated force	Peak force	Model		230 V	400V
R88L-EC-FW-Iron-core motors	48 N	105 N	Coil without connectors	R88L-EC-FW-0303-ANPC	R88D-KN02H-ECT-L	R88D-KN06F-ECT-L
	96 N	210 N		R88L-EC-FW-0306-ANPC	R88D-KN04H-ECT-L	R88D-KN10F-ECT-L
	160 N	400 N		R88L-EC-FW-0606-ANPC	R88D-KN08H-ECT-L	R88D-KN15F-ECT-L
	240 N	600 N		R88L-EC-FW-0609-ANPC	R88D-KN10H-ECT-L	R88D-KN20F-ECT-L
	320 N	800 N		R88L-EC-FW-0612-ANPC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
$230 \mathrm{~V} / 400 \mathrm{~V}$	608 N	1600 N		R88L-EC-FW-1112-ANPC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	760 N	2000 N		R88L-EC-FW-1115-ANPC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	48 N	105 N	Coil with connectors	R88L-EC-FW-0303-APLC	R88D-KN02H-ECT-L	R88D-KN06F-ECT-L
	96 N	210 N		R88L-EC-FW-0306-APLC	R88D-KN04H-ECT-L	R88D-KN10F-ECT-L
	160 N	400 N		R88L-EC-FW-0606-APLC	R88D-KN08H-ECT-L	R88D-KN15F-ECT-L
	240 N	600 N		R88L-EC-FW-0609-APLC	R88D-KN10H-ECT-L	R88D-KN20F-ECT-L
	320 N	800 N		R88L-EC-FW-0612-APLC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	608 N	1600 N		R88L-EC-FW-1112-APLC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	760 N	2000 N		R88L-EC-FW-1115-APLC	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
R88L-EC-GWIronless motors	29 N	100 N	Coil without connectors	R88L-EC-GW-0303-ANPS	R88D-KN02H-ECT-L	-
	58 N	200 N		R88L-EC-GW-0306-ANPS	R88D-KN08H-ECT-L	-
	87 N	300 N		R88L-EC-GW-0309-ANPS	R88D-KN10H-ECT-L	-
	70 N	240 N		R88L-EC-GW-0503-ANPS	R88D-KN02H-ECT-L	-
	140 N	480 N		R88L-EC-GW-0506-ANPS	R88D-KN04H-ECT-L	-
	210 N	720 N		R88L-EC-GW-0509-ANPS	R88D-KN08H-ECT-L	-
	141 N	700 N		R88L-EC-GW-0703-ANPS	R88D-KN04H-ECT-L	-
	282 N	1400 N		R88L-EC-GW-0706-ANPS	R88D-KN08H-ECT-L	-
	423 N	2100 N		R88L-EC-GW-0709-ANPS	R88D-KN10H-ECT-L	-
	29 N	100 N	Coil with connectors	R88L-EC-GW-0303-APLS	R88D-KN02H-ECT-L	-
	58 N	200 N		R88L-EC-GW-0306-APLS	R88D-KN08H-ECTL	-
230 V	87 N	300 N		R88L-EC-GW-0309-APLS	R88D-KN10H-ECT-L	-
	70 N	240 N		R88L-EC-GW-0503-APLS	R88D-KN02H-ECT-L	-
	140 N	480 N		R88L-EC-GW-0506-APLS	R88D-KN04H-ECT-L	-
	210 N	720 N		R88L-EC-GW-0509-APLS	R88D-KN08H-ECT-L	-
	141 N	700 N		R88L-EC-GW-0703-APLS	R88D-KN04H-ECT-L	-
	282 N	1400 N		R88L-EC-GW-0706-APLS	R88D-KN08H-ECT-L	-
	423 N	2100 N		R88L-EC-GW-0709-APLS	R88D-KN10H-ECT-L	-

Type designation

Linear motor coil
R88L-EC-FW-0303-ANPC

Coil model	
Code	Specifications
03	3 -coil model
06	6-coil model
09	9-coil model
12	12 -coil model
15	15 -coil model

Magnet track

Hall sensor

Linear servomotor specifications

Iron-core motors R88L-EC-FW- \square (230/400 VAC)

Voltage		230/400V						
Linear motor model	R88L-EC-FW- \square	0303- \square	0306- \square	0606-■	0609-■	0612- \square	1112- \square	1115-■
Maximum speed (100 V)	m / s	2,5		2			1	
Maximum speed (200 V)	m/s	5		4			2	
Maximum speed (400 V)	m/s	10		8			4	
Peak force* ${ }^{1}$	N	105	210	400	600	800	1600	2000
Peak current*1	Arms	3.1	6.1	10	15	20	20	25
Continuous force ${ }^{\text {² }}$	N	48	96	160	240	320	608	760
Continuous current ${ }^{2}$	Arms	1.24	2.4	3.4	5.2	6.9	6.5	8.2
Motor force constant	N/A ${ }_{\text {rms }}$	39.7		46.5			93	
BEMF	V/m/s	32		38			76	
Motor constant	$\mathrm{N} / \sqrt{ } \mathbf{W}$	9.75	13.78	19.49	23.87	27.57	41.47	46.37
Phase resistance	Ω	5.34	2.68	1.83	1.23	0.92	1.6	1.29
Phase Inductance	mH	34.7	17.4	13.7	9.2	6.9	12.8	10.3
Electrical time constant	ms	6,5		7,5			8	
Max. cont. power dissipation (all coils)	W	32	63	88	131	175	279	349
Thermal resistance	K/W	2.20	1.10	0.78	0.52	0.39	0.23	0.18
Thermal time constant	s	110		124			126	
Magnetic attraction force	N	300	500	1020	1420	1820	3640	4440
Magnet pole pitch	mm	24						
Weight coil unit ${ }^{3}$	kg	0.48	0.78	1.31	1.84	2.37	4.45	5.45
Weight magnet track	kg/m	2.1		3.8			10.5	
Dimension cooling plate ($1 \times \mathrm{w} \times \mathrm{h}$)	mm	$238 \times 220 \times 10$		$250 \times 287 \times 12$			$371 \times 330 \times 14$	
Protection methods ${ }^{4}$		Temperature sensors (KTY-83/121 \& PTC 110C), self cooling						
Hall sensor		Digital (optional)						
Insulation class		Class B						
Max. bus voltage		560 VDC						
Insulation resistance		500 VDC, min. $10 \mathrm{M} \Omega$						
Di-electric strength		2750 V for 1 sec						
Max. allowable coil temperature		$130^{\circ} \mathrm{C}$						
Ambient humidity		20 to 80\% (non-condensing)						
Max. allowable magnet temperature		$70^{\circ} \mathrm{C}$						

${ }^{* 1}$ Coil temperature rising by $6 \mathrm{~K} / \mathrm{s}$.
${ }^{* 2}$ Values at $100^{\circ} \mathrm{C}$ coil temperature and magnets at $25^{\circ} \mathrm{C}$. Coil unit must be attached to the given cooling plate sizes in the table and an airstream of $2.5 \mathrm{~m} / \mathrm{s}\left(25^{\circ} \mathrm{C}\right)$ has to be applied.
*3 Weight without connector and cable.
*4 ${ }^{2}$ t has to be set properly for high current applications.
All other values at $25^{\circ} \mathrm{C}(\pm 10 \%)$.

Force-speed characteristics

*1 The DCBus voltage corresponds to an AC voltage input ($\mathrm{V}_{\mathrm{ACIN}}$) of 235 V or more.
2 The DCBus voltage corresponds to an AC voltage input ($\mathrm{V}_{\mathrm{ACI}}$) of 400 V or more.
${ }^{3}$ The DCBus voltage corresponds to an AC voltage input ($\mathrm{V}_{\mathrm{ACIN}}$) of 115 V or more.
Note: The DCBus value is calculated from the below formula (where is the AV voltage drop in the DC Bus):

$$
D C B u S=V_{A C I N} \times \sqrt{2}-\Delta V
$$

Ironless motors R88L-EC-GW- \square (230 VAC)

Voltage		230V								
Linear motor model	R88L-EC-GW- \square	0303- \square	0306-■	0309- \square	0503- \square	0506-■	0509- \square	0703- \square	0706-■	0709- \square
Maximum speed (100V)	m/s	8			2.2			1.2		
Maximum speed (200V)	m/s	16			4.4			2.4		
Peak force* ${ }^{*}$	N	100	200	300	240	480	720	700	1400	2100
Peak current ${ }^{* 1}$	Arms	5	10	15	3.5	7.1	10.6	5.6	11.3	16.9
Continuous force ${ }^{2}$	N	29	58	87	70	140	210	141	282	423
Continuous current ${ }^{\text {² }}$	Arms	1.46	2.92	4.37	1.03	2.06	3.09	1.14	2.27	3.41
Motor force constant	N/A ${ }_{\text {rms }}$	19.9			68			124		
BEMF	V/m/s	16.2			55.5			101.2		
Motor constant	$\mathrm{N} / \sqrt{ } \mathrm{W}$	5.07	7.16	8.78	9.74	13.77	17.13	18.15	25.67	32.02
Phase resistance	Ω	5.5	2,8	1.8	15.9	8	5,3	15.8	7.9	5.3
Phase Inductance	mH	1.8	0.9	0.6	13	6.5	4.2	28	14	9
Electrical time constant	ms	0.35			0.8			1.8		
Max. cont. power dissipation (all coils)	W	39	79	111	46	95	140	82	163	247
Thermal resistance ${ }^{* 2}$	K/W	1.81	0.90	0.65	1.26	0.63	0.42	1.04	0.52	0.34
Thermal time constant	s	36			72			156		
Magnetic attraction force	N	0								
Magnet pole pitch	mm	30			42			57		
Weight coil unit ${ }^{3}$	kg	0.084	0.138	0.198	0.25	0.47	0.69	0.55	0.95	1.35
Weight magnet track	kg/m	4.8			11.2			24		
Protection methods ${ }^{4}$		Temperature sensors NTC10k, PTC110C, self cooling								
Hall sensor		Digital (optional)								
Insulation class		Class B								
Max. bus voltage		325 VDC								
Insulation resistance		$500 \mathrm{VDC}, \mathrm{min} .10 \mathrm{M} \Omega$								
Di-electric strength		2250 V for 1 sec								
Max. allowable coil temperature		$110^{\circ} \mathrm{C}$								
Ambient humidity		20 to 80\% non-condensing								
Max. allowable magnet temperature		$70^{\circ} \mathrm{C}$								

${ }^{* 1}$ Coil temperature rising 03 -series by $40 \mathrm{~K} / \mathrm{s}, 05$-series by $20 \mathrm{~K} / \mathrm{s}$ and 07 -series by $20 \mathrm{~K} / \mathrm{s}$.
${ }^{* 2}$ Values at $110^{\circ} \mathrm{C}$ coil temperature and magnets at $25^{\circ} \mathrm{C}$. Coil unit installed on a water-cooled aluminium surface. Attention: All other values at $25^{\circ} \mathrm{C}$. Values can have a tolerance of 10%.
*3 Weight without connector and cable.
$41^{2} t$ has to be set properly for high current overload applications.
All other values at $25^{\circ} \mathrm{C}(\pm 10 \%)$.

Force-speed characteristics

${ }^{* 1}$ The DCBus voltage corresponds to an AC voltage input ($\mathrm{V}_{\mathrm{ACIN}}$) of 235 V or more. ${ }^{2} 2$ The DCBus voltage corresponds to an AC voltage input ($\mathrm{V}_{\mathrm{ACIN}}$) of 115 V or more.

Note: The DCBus value is calculated from the below formula:

$$
D C B u S=V_{A C I N} \times \sqrt{2}-\Delta V
$$

Dimensions

Iron-core R88L-EC-FW-03 \square

Motor coil

Model	L1 (mm)	L2 (mm)	n
R88L-EC-FW-0303- \square	105 ± 0.5	$79+0.15 /-0.35$	1
R88L-EC-FW-0306- \square	153 ± 0.5	$127+0.15 /-0.35$	2

Motor coil dimensions with magnet track and hall sensor (optional)

$35-\stackrel{\text { s/s/ }}{\text { s/os }}$

Wiring specifications for motor with connectors
Units: mm

Mating connector:
Plug type: LPRA06BFRBN170

Temperature sensor connector		
Pin No.	Wire	Function
1	Not used	-
2	Not used	-
3	Not used	-
4	Not used	-
5	Not used	-
6	White	PTC
7	Brown	PTC
8	Green	KTY
9	Yellow	KTY
Case	Shield	-

Hall sensor connector (optional)		
Pin No.	Wire	Function
1	Brown	5 V
2	Red	Hall U
3	Grey	Hall V
4	Yellow	Hall W
5	White	GND
6	Not used	Not used
7	Not used	Not used
8	Not used	Not used
9	Not used	Not used
Case	Shield	-

Magnet track

Model	L1 (mm)	\mathbf{n}	Approx. weight (kg/m)
R88L-EC-FM-03096-A	96	1	2.1
R88L-EC-FM-03144-A	144	2	
R88L-EC-FM-03384-A	384	7	

Iron-core R88L-EC-FW-06 \square

Motor coil

Model	L1 (mm)	L2 (mm)	n
R88L-EC-FW-0606- \square	153 ± 0.5	$127+0.15 /-0.35$	2
R88L-EC-FW-0609- \square	201 ± 0.5	$175+0.15 /-0.35$	3
R88L-EC-FW-0612- \square	249 ± 0.5	$223+0.15 /-0.35$	4

Motor coil dimensions with magnet track and hall sensor (optional)

Wiring specifications for motor with connectors

Cable length 500 ± 30
Connector optional
Made by Hypertac
LRRA06AMRPN182 (MALE)
Pin article code: 021.279.1020

Power connector		
Pin No.	Wire	Function
1	Black-1	Phase U
2	Black-2	Phase V
3	Green/Yellow	Ground
4	Black-3	Phase W
5	Not used	-
6	Not used	-

Mating connector:
Plug type: LPRA06BFRBN170

Temperature sensor connector		
Pin No.	Wire	Function
1	Not used	-
2	Not used	-
3	Not used	-
4	Not used	-
5	Not used	-
6	White	PTC
7	Brown	PTC
8	Green	KTY
9	Yellow	KTY
Case	Shield	-

Hall sensor connector (optional)		
Pin No.	Wire	Function
1	Brown	5 V
2	Red	Hall U
3	Grey	Hall V
4	Yellow	Hall W
5	White	GND
6	Not used	Not used
7	Not used	Not used
8	Not used	Not used
9	Not used	Not used
Case	Shield	-

Magnet track

Model	L1 (mm)	\mathbf{n}	Approx. weight (kg/m)
R88L-EC-FM-06192-A	192	3	3.8
R88L-EC-FM-06288-A	288	5	

Iron-core R88L-EC-FW-11 \square

Motor coil

Model	L1 (mm)	L2 (mm)	n
R88L-EC-FW-1112- \square	249 ± 0.5	$223+0.15 /-0.35$	4
R88L-EC-FW-1115- \square	297 ± 0.5	$271+0.15 /-0.35$	5

Motor coil dimensions with magnet track and hall sensor (optional)

Wiring specifications for motor with connectors

Mating connector:
Plug type: LPRAO6BFRBN170

Temperature sensor connector		
Pin No.	Wire	Function
1	Not used	-
2	Not used	-
3	Not used	-
4	Not used	-
5	Not used	-
6	White	PTC
7	Brown	PTC
8	Green	KTY
9	Yellow	KTY
Case	Shield	-

Hall sensor connector (optional)		
Pin No.	Wire	Function
1	Brown	5 V
2	Red	Hall U
3	Grey	Hall V
4	Yellow	Hall W
5	White	GND
6	Not used	Not used
7	Not used	Not used
8	Not used	Not used
9	Not used	Not used
Case	Shield	-

Magnet track

Model	L1 (mm)	\mathbf{n}	Approx. weight (kg/m)
R88L-EC-FM-11192-A	192	3	
R88L-EC-FM-11288-A	288	5	

Ironless R88L-EC-GW-03 \square

Motor coil

Model	L1 (mm)	L2 (mm)	n
R88L-EC-GW-0303- \square	95.4	78	3
R88L-EC-GW-0306- \square	155.4	138	6
R88L-EC-GW-0309- \square	215.4	198	9

Motor with magnet track (separate order no.)

Motor with hall sensor (optional)

Wiring specifications for motor with connectors

Units: mm

Magnet track
 Magnet track

Model	L1 (mm)	\mathbf{n}	Approx. weight (kg/m)
R88L-EC-GM-03090-A	90	2	4.8
R88L-EC-GM-03120-A	120	3	
R88L-EC-GM-03390-A	390	12	

种 $\varnothing_{3.2}$

Ironless R88L-EC-GW-05 \square

Motor coil

Model	L1 (mm)	L2 (mm)	n
R88L-EC-GW-0503- \square	123.4	106	3
R88L-EC-GW-0506- \square	207.4	190	6
R88L-EC-GW-0509- \square	291.4	274	9

Motor with magnet track (separate order no.)

Mating connector:
Plug type: SPOC06KFSDN169

Temperature sensor connector		
Pin No.	Wire	Function
1	Not used	-
2	Not used	-
3	Not used	-
4	Not used	-
5	Not used	-
6	White	PTC
7	Brown	PTC
8	Green	NTC
9	Yellow	NTC
Case	Shield	-

Units: mm
$6 \overbrace{9}^{5} \quad \begin{aligned} & \text { Cable length } 500 \pm 30 \\ & \text { D-Sub 9-pin (FEMALE) }\end{aligned}$

Hall sensor connector (optional)		
Pin No.	Wire	Function
1	Brown	5 V
2	Red	Hall U
3	Grey	Hall V
4	Yellow	Hall W
5	White	GND
6	Not used	Not used
7	Not used	Not used
8	Not used	Not used
9	Not used	Not used
Case	Shield	-

Magnet track

Model	L1 (mm)	\mathbf{n}	Approx. weight (kg/m)
R88L-EC-GM-05126-A	126	2	11.2
R88L-EC-GM-05168-A	168	3	
R88L-EC-GM-05210-A	210	4	
R88L-EC-GM-05546-A	546	12	

Ironless R88L-EC-GW-07 \square

Motor coil

Model	L1 (mm)	L2 (mm)	n
R88L-EC-GW-0703- \square	151.4	134	3
R88L-EC-GW-0706- \square	265.4	248	6
R88L-EC-GW-0709- \square	379.4	362	9

Magnet track

Model	L1 (mm)	\mathbf{n}	Approx. weight (kg/m)
R88L-EC-GM-07114-A	114	1	25.5
R88L-EC-GM-07171-A	171	2	
R88L-EC-GM-07456-A	456	7	

Optional serial converter unit
Specifications

Serial converter model R88A-		SC01K-E	SC02K-E
Description		Serial converter from 1 Vpp to G5 serial data transmission and with hall sensor input	
Temperature sensor		KTY sensor detection of iron-core motor coil	NTC sensor detection of ironless motor coil
Electrical characteristics	Power supply voltage	5 VDC, max. 250 mA supplied by the drive	
	Standard resolution	Interpolation factor 100 plus quadrature count	
	Max. input frequency	400 kHz 1 Vpp	
	Analog input signals (cos, sin, Ref)	Differential input amplitude: 0.4 V to 1.2 V Input signal level: 1.5 V to 3.5 V	
	Output signals	Position data, hall \& temperature sensor information, and alarms	
	Output method	Serial data transmission	
	Transmission cycle	$<42 \mu \mathrm{~s}$	
Mechanical characteristics	Vibration resistance	$98 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$. (1 to 2500 Hz) in three directions	
	Shock resistance	$980 \mathrm{~m} / \mathrm{s}^{2},(11 \mathrm{~ms})$ two times in three directions	
Environmental conditions	Operating temperature	0 to $55^{\circ} \mathrm{C}$	
	Storage temperature	-20 to $+80^{\circ} \mathrm{C}$	
	Humidity	20\% to 90\% relative humidity (without condensation)	

CN4
Serial data output to linear servo drive

CN1 Encoder input 1Vpp with programmable lines NUMERIK JENA standard	Pin No.	Signal
	1	SDA*
	2	SCL*
	3	Not used
Connector D-Sub 15-pin (female)	4	/Ref signal ($\mathrm{U}_{0}-$)
	5	/Cos signal (U2-)
	6	/Sin signal (U_{1-})
	7	Not used
	8	5 V
	9	0 V
	10	Not used
	11	Not used
	12	Ref signal (U0)
	13	Cos signal (U_{2})
	14	Sin signal (U_{1})
	15	Inner shield (IS)
	Case	Shield

CN2	Pin No.	Signal
Hall \& temperature sensors interface	1	5 V
	2	Hall U
	3	Hall V
	4	Hall W
	5	GND
	6	PTC
	7	PTC
	8	KTY/NTC
Connector D-Sub 9-pin (female)	9	KTY/NTC
	Case	Shield

*Reserved. Please do not use
Note: As the 6,7,8,9 pins in the CN2 and CN3 connectors are internally wired, the Temperature sensor can be connected to both connectors. When the Hall sensor is also required, use the same cable for Hall \& Temperature signals and the CN2 connector.

Ordering information

Note: The symbols (1)(2)(3)... show the recommended sequence to select the linear motor, cables and serial converter for a linear motor system.

Linear motors

R88L-EC-FW- \square Iron-core type
230 VAC single phase/three phase, 400 VAC three phase

Linear motor parts							Linear Servo drive	
Symbol	Rated force	Peak force	(1) Iron-core motor coil		(2) Magnet track	(3) Hall Sensor	230 V	400 V
	48 N	105 N	Coil without connectors	R88L-EC-FW-0303-ANPC	R88L-EC-FM-03096-A R88L-EC-FM-03144-A R88L-EC-FM-03384-A		R88D-KN02H-ECT-L	R88D-KN06F-ECT-L
(3)(4)	96 N	210 N		R88L-EC-FW-0306-ANPC			R88D-KN04H-ECT-L	R88D-KN10F-ECT-L
	160 N	400 N		R88L-EC-FW-0606-ANPC	R88L-EC-FM-06192-AR88L-EC-FM-06288-A		R88D-KN08H-ECT-L	R88D-KN15F-ECT-L
	240 N	600 N		R88L-EC-FW-0609-ANPC			R88D-KN10H-ECT-L	R88D-KN20F-ECT-L
	320 N	800 N		R88L-EC-FW-0612-ANPC			R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	608 N	1600 N		R88L-EC-FW-1112-ANPC	R88L-EC-FM-11192-A R88L-EC-FM-11288-A		R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	760 N	2000 N		R88L-EC-FW-1115-ANPC			R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	48 N	105 N	Coil with connectors	R88L-EC-FW-0303-APLC	R88L-EC-FM-03096-A R88L-EC-FM-03144-A R88L-EC-FM-03384-A		R88D-KN02H-ECT-L	R88D-KN06F-ECT-L
	96 N	210 N		R88L-EC-FW-0306-APLC			R88D-KN04H-ECT-L	R88D-KN10F-ECT-L
	160 N	400 N		R88L-EC-FW-0606-APLC	R88L-EC-FM-06192-A R88L-EC-FM-06288-A		R88D-KN08H-ECT-L	R88D-KN15F-ECT-L
	240 N	600 N		R88L-EC-FW-0609-APLC			R88D-KN10H-ECT-L	R88D-KN20F-ECT-L
	320 N	800 N		R88L-EC-FW-0612-APLC			R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	608 N	1600 N		R88L-EC-FW-1112-APLC	$\begin{aligned} & \hline \text { R88L-EC-FM-11192-A } \\ & \text { R88L-EC-FM-11288-A } \end{aligned}$		R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	760 N	2000 N		R88L-EC-FW-1115-APLC			R88D-KN15H-ECT-L	R88D-KN30F-ECT-L

R88L-EC-GW- \square Ironless type
230 VAC single phase/three phase

Linear motor parts							Linear Servo drive
Type	Rated force	Peak force	(1) Ironless motor coil		(2) Magnet track	(3) Hall Sensor	230 V
$\begin{aligned} & 1 \\ & \text { (2) } \\ & \text { (3) } \\ & \hline \end{aligned}$	29 N	100 N	Coil without connectors	R88L-EC-GW-0303-ANPS	R88L-EC-GM-03090-A R88L-EC-GM-03120-A R88L-EC-GM-03390-A	R88L-EC-GH-03NN-A	R88D-KN02H-ECT-L
	58 N	200 N		R88L-EC-GW-0306-ANPS			R88D-KN08H-ECT-L
	87 N	300 N		R88L-EC-GW-0309-ANPS			R88D-KN10H-ECT-L
	70 N	240 N		R88L-EC-GW-0503-ANPS	$\begin{aligned} & \text { R88L-EC-GM-05126-A } \\ & \text { R88L-EC-GM-05546-A } \\ & \text { R88L-EC-GM-05168-A } \\ & \text { R88L-EC-GM-05210-A } \end{aligned}$	R88L-EC-GH-05NN-A	R88D-KN02H-ECT-L
	140 N	480 N		R88L-EC-GW-0506-ANPS			R88D-KN04H-ECT-L
	210 N	720 N		R88L-EC-GW-0509-ANPS			R88D-KN08H-ECT-L
	141 N	700 N		R88L-EC-GW-0703-ANPS	R88L-EC-GM-07114-A R88L-EC-GM-07171-A R88L-EC-GM-07456-A	R88L-EC-GH-07NN-A	R88D-KN04H-ECT-L
	282 N	1400 N		R88L-EC-GW-0706-ANPS			R88D-KN08H-ECT-L
	423 N	2100 N		R88L-EC-GW-0709-ANPS			R88D-KN10H-ECT-L
	29 N	100 N	Coil with connectors	R88L-EC-GW-0303-APLS	R88L-EC-GM-03090-A R88L-EC-GM-03120-A R88L-EC-GM-03390-A	R88L-EC-GH-03NN-A	R88D-KN02H-ECT-L
	58 N	200 N		R88L-EC-GW-0306-APLS			R88D-KN08H-ECT-L
	87 N	300 N		R88L-EC-GW-0309-APLS			R88D-KN10H-ECT-L
	70 N	240 N		R88L-EC-GW-0503-APLS	R88L-EC-GM-05126-A R88L-EC-GM-05546-A R88L-EC-GM-05168-A R88L-EC-GM-05210-A	R88L-EC-GH-05NN-A	R88D-KN02H-ECT-L
	140 N	480 N		R88L-EC-GW-0506-APLS			R88D-KN04H-ECTL
	210 N	720 N		R88L-EC-GW-0509-APLS			R88D-KN08H-ECT-L
	141 N	700 N		R88L-EC-GW-0703-APLS	R88L-EC-GM-07114-A R88L-EC-GM-07171-A R88L-EC-GM-07456-A	R88L-EC-GH-07NN-A	R88D-KN04H-ECTL
	282 N	1400 N		R88L-EC-GW-0706-APLS			R88D-KN08H-ECT-L
	423 N	2100 N		R88L-EC-GW-0709-APLS			R88D-KN10H-ECT-L

Servo drive

(4) Refer to Accurax G5 servo drive chapter for detailed drive specifications and selection of drive accessories.

Serial converter unit

Symbol	Specifications	Model
	Serial converter unit from 1 Vpp to G5 serial data transmission (with KTY sensor detection of iron-core motor coil)	R88A-SC01K-E
	Serial converter unit from 1 Vpp to G5 serial data transmission (with NTC sensor detection of ironless motor coil)	R88A-SC02K-E

Note: If no temperature sensor is needed, then it does not matter which converter you use.

Serial converter cable to servo drive

Note: This cable can be used also for A/B pulse encoder Numerik Jena standard pinout.
Power cable

Linear encoder cable to serial converter

Hall and temperature sensors cable to serial converter

Symbol	Specifications		Model	Appearance	
(9)	Extension cable from hall and temperaturesensors to R88A-SC0 $\square \mathrm{K}-\mathrm{E}$ serial converter.(Connector DB-9)(This extension cable is optional)	1.5 m	R88A-CFKB001-5CR-E		
		3 m	R88A-CFKB003CR-E		
		5 m	R88A-CFKB005CR-E		
		10 m	R88A-CFKB010CR-E		
		15 m	R88A-CFKB015CR-E		

Connectors

Specification	Model
Accurax G5 servo drive encoder connector (for CN4)	R88A-CNK41L
Hypertac power cable connector IP67 for iron-core linear motors	LPRA-06B-FRBN170
Hypertac power cable connector IP67 for ironless linear motors	SROC06JMSCN169

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. SysCat_I160E-EN-02 In the interest of product improvement, specifications are subject to change without notice.

R88L-EA-AF- \square

Accurax linear motor axis

Advanced linear motor axis

High-efficiency iron-core linear motors and magnet tracks in a wide range of over 100 standard linear motor axis.

- Low moving mass to ensure a high degree of dynamism
- Optimized stroke/product length ratio
- Up to $5 \mathrm{~m} / \mathrm{s}$ maximum speed with $1 \mu \mathrm{~m}$ repeatability
- Compact and efficiency oriented design
- Highly versatile and ready-to-use

Ratings

- 230/400 VAC 48 to 760 N (2000 N peak force)

System configuration

Linear motor/servo drive combination

Linear axis					Linear servo drive	
					Accurax G5 EtherCAT	
Type	Voltage	Rated force	Peak force	Model	230 V	400 V
R88L-EA-AF- \square Linear motor axis	230/400 V	48 N	105 N	R88L-EA-AF-0303- \square	R88D-KN02H-ECT-L	R88D-KN10F-ECT-L
		96 N	210 N	R88L-EA-AF-0306- \square	R88D-KN04H-ECT-L	R88D-KN10F-ECT-L
		160 N	400 N	R88L-EA-AF-0606- \square	R88D-KN08H-ECT-L	R88D-KN15F-ECT-L
		240 N	600 N	R88L-EA-AF-0609- \square	R88D-KN10H-ECT-L	R88D-KN20F-ECT-L
		320 N	800 N	R88L-EA-AF-0612- \square	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
		608 N	1600 N	R88L-EA-AF-1112- \square	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
		760 N	2000 N	R88L-EA-AF-1115- \square	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L

Type designation

Linear motor axis

Note: The standard linear motor axis includes 1 Vpp SinCos encoder. For another encoder options or customized versions of linear axis please contact your OMRON representative.

Linear servomotor specifications

Linear motor axis R88L-EA-AF- \square (230/400 VAC)

Voltage			230/400 VAC						
Linear axis model		R88L-EA-AF- \square	0303- \square	0306-■	0606- \square	0609- \square	0612-■	1112-■	1115-■
	Linear servo motor coil used	R88L-EC-FW-	0303	0306	0606	0609	0612	1112	1115
	Peak force* ${ }^{\text {* }}$	N	105	210	400	600	800	1600	2000
	Peak current ${ }^{*}$	$\mathrm{A}_{\text {rms }}$	3.1	6.1	10	15	20	20	25
	Continuous force*2	N	48	96	160	240	320	608	760
	Continuous current ${ }^{*}$	$\mathrm{A}_{\text {rms }}$	1.2	2.5	3.4	5.2	6.9	6.5	8.2
	Motor force constant	N/A ${ }_{\text {rms }}$	39.7		46.5			93.0	
	BEMF	V/m/s	32		38			76	
	Motor constant	$\mathrm{N} / \sqrt{ } \mathbf{W}$	9.75	13.78	19.49	23.87	27.57	41.47	46.37
	Phase resistance	Ω	5.34	2.68	1.83	1.23	0.92	1.6	1.29
	Phase Inductance	mH	34.7	17.4	13.7	9.2	6.9	12.8	10.3
	Electrical time constant	ms	6.5		7.5			8	
	Pole pitch	mm	24						
	Weight of moving part	kg	3.1	3.9	5.4	6.7	7.9	13.7	15.9
	Recommended horizontal payload ${ }^{* 3}$	kg	5		15			35	
	Uni-directional repeatability ${ }^{*}$	$\mu \mathrm{m}$	± 1						
	Max. allowable speed	m / s	5						
	Min./max. standard stroke	mm	110/2126	158/2078	110/2126	158/2078	110/2030	110/2126	158/2174
	Stroke increment	mm	96						
	Encoder type		1 Vptp SIN/COS \& Reference mark, metalcase, optical, incremental						
	Encoder resolution		$20 \mu \mathrm{~m}$						
	Accuracy class		$\pm 5 \mu \mathrm{~m} / \mathrm{m}$						
	Hall sensor		Digital, TTL signals						
	Protection methods*4		Temperature sensors (KTY-83/121 \& PTC 110C), self cooling						
	Hall-Sensor supply		5 to $24 \mathrm{VDC}$,						
	Encoder reading head supply		5 VDC, max. 250 mA						
	Insulation class		Class B						
	Max. bus voltage		560 VDC						
	Insulation resistance		500 VDC , min. $10 \mathrm{M} \Omega$						
	Ambient humidity		20 to 80\% (non-condensing)						
	Altitude		1000 m						
	Max. allowable magnet temperature		$70^{\circ} \mathrm{C}$						

${ }^{*}{ }^{*}$ Coil temperature rising by $6 \mathrm{~K} / \mathrm{s}$.
${ }^{* 2}$ Values at $100^{\circ} \mathrm{C}$ coil temperature and magnets at $25^{\circ} \mathrm{C}$. An airstream of $2.5 \mathrm{~m} / \mathrm{s}\left(25^{\circ} \mathrm{C}\right)$ has to be applied.
${ }^{* 3}$ Referring to the center of gravity, for higher payload or different position of payload please contact your OMRON representative.
${ }^{*} 4 I^{2} t$ has to be set properly for high current applications.
All other values at $25^{\circ} \mathrm{C}(\pm 10 \%)$.
Centre of gravity

top view

Acceleration-payload characteristics

(Kg)
 (Kg)

Note: The values on the above curves are calculated based on the below formula and with horizontal orientation:
Acceleration $=\left(\right.$ Force - Force $\left._{\text {Friction }}\right) /$ Weigth Total

Dimensions

R88L-EA-AF-0303- \square (230/400 VAC)

Linear axis model	Effective stroke in mm	$\begin{gathered} \mathrm{L} \\ \text { in } \mathrm{mm} \end{gathered}$	n	$\begin{gathered} \hline \text { № of mounting } \\ \text { holes } \end{gathered}$	Weight of moving table including motor coil (kg)	$\begin{gathered} \text { Weight of the } \\ \text { complete axis (kg) } \end{gathered}$
R88L-EA-AF-0303-0110	110	312	2	6	3.1	9.5
R88L-EA-AF-0303-0206	206	408	3	8	3.1	10.9
R88L-EA-AF-0303-0302	302	504	4	10	3.1	12.4
R88L-EA-AF-0303-0398	398	600	5	12	3.1	13.8
R88L-EA-AF-0303-0494	494	696	6	14	3.1	15.2
R88L-EA-AF-0303-0590	590	792	7	16	3.1	16.7
R88L-EA-AF-0303-0686	686	888	8	18	3.1	18.1
R88L-EA-AF-0303-0782	782	984	9	20	3.1	19.6
R88L-EA-AF-0303-0878	878	1080	10	22	3.1	21.0
R88L-EA-AF-0303-0974	974	1176	11	24	3.1	22.5
R88L-EA-AF-0303-1070	1070	1272	12	26	3.1	23.9
R88L-EA-AF-0303-1166	1166	1368	13	28	3.1	25.4
R88L-EA-AF-0303-1262	1262	1464	14	30	3.1	26.8
R88L-EA-AF-0303-1358	1358	1560	15	32	3.1	28.2
R88L-EA-AF-0303-1454	1454	1656	16	34	3.1	29.7
R88L-EA-AF-0303-1550	1550	1752	17	36	3.1	31.1
R88L-EA-AF-0303-1646	1646	1848	18	38	3.1	32.6
R88L-EA-AF-0303-1742	1742	1944	19	40	3.1	34.0
R88L-EA-AF-0303-1838	1838	2040	20	42	3.1	35.5
R88L-EA-AF-0303-1934	1934	2136	21	44	3.1	36.9
R88L-EA-AF-0303-2030	2030	2232	22	46	3.1	38.3
R88L-EA-AF-0303-2126	2126	2328	23	48	3.1	39.8

R88L-EA-AF-0306- \square (230/400 VAC)

Linear axis model	Effective stroke in mm	$\begin{gathered} \mathrm{L} \\ \text { in } \mathrm{mm} \end{gathered}$	n	$\begin{gathered} \text { № of mounting } \\ \text { holes } \end{gathered}$	Weight of moving table including motor coil (kg)	$\begin{gathered} \text { Weight of the } \\ \text { complete axis (kg) } \end{gathered}$
R88L-EA-AF-0306-0158	158	408	3	8	3.9	11.6
R88L-EA-AF-0306-0254	254	504	4	10	3.9	13.1
R88L-EA-AF-0306-0350	350	600	5	12	3.9	14.5
R88L-EA-AF-0306-0446	446	696	6	14	3.9	15.9
R88L-EA-AF-0306-0542	542	792	7	16	3.9	17.4
R88L-EA-AF-0306-0638	638	888	8	18	3.9	18.8
R88L-EA-AF-0306-0734	734	984	9	20	3.9	20.3
R88L-EA-AF-0306-0830	830	1080	10	22	3.9	21.7
R88L-EA-AF-0306-0926	926	1176	11	24	3.9	23.2
R88L-EA-AF-0306-1022	1022	1272	12	26	3.9	24.6
R88L-EA-AF-0306-1118	1118	1368	13	28	3.9	26.1
R88L-EA-AF-0306-1214	1214	1464	14	30	3.9	27.5
R88L-EA-AF-0306-1310	1310	1560	15	32	3.9	28.9
R88L-EA-AF-0306-1406	1406	1656	16	34	3.9	30.4
R88L-EA-AF-0306-1502	1502	1752	17	36	3.9	31.8
R88L-EA-AF-0306-1598	1598	1848	18	38	3.9	33.3
R88L-EA-AF-0306-1694	1694	1944	19	40	3.9	34.7
R88L-EA-AF-0306-1790	1790	2040	20	42	3.9	36.2
R88L-EA-AF-0306-1886	1886	2136	21	44	3.9	37.6
R88L-EA-AF-0306-1982	1982	2232	22	46	3.9	39.0
R88L-EA-AF-0306-2078	2078	2328	23	48	3.9	40.5

Units: mm
Power cable

R88L-EA-AF-0606- \square (230/400 VAC)

Linear axis model	Effective stroke in mm	$\begin{gathered} \mathrm{L} \\ \text { in } \mathrm{mm} \end{gathered}$	n	$\begin{aligned} & \hline \text { № of mounting } \\ & \text { holes } \end{aligned}$	Weight of moving table including motor coil (kg)	Weight of the complete axis (kg)
R88L-EA-AF-0606-0110	110	360	3	8	5.4	14.1
R88L-EA-AF-0606-0206	206	456	4	10	5.4	15.9
R88L-EA-AF-0606-0302	302	552	5	12	5.4	17.6
R88L-EA-AF-0606-0398	398	648	6	14	5.4	19.3
R88L-EA-AF-0606-0494	494	744	7	16	5.4	21.0
R88L-EA-AF-0606-0590	590	840	8	18	5.4	22.8
R88L-EA-AF-0606-0686	686	936	9	20	5.4	24.5
R88L-EA-AF-0606-0782	782	1032	10	22	5.4	26.2
R88L-EA-AF-0606-0878	878	1128	11	24	5.4	28.0
R88L-EA-AF-0606-0974	974	1224	12	26	5.4	29.7
R88L-EA-AF-0606-1070	1070	1320	13	28	5.4	31.4
R88L-EA-AF-0606-1166	1166	1416	14	30	5.4	33.2
R88L-EA-AF-0606-1262	1262	1512	15	32	5.4	34.9
R88L-EA-AF-0606-1358	1358	1608	16	34	5.4	36.6
R88L-EA-AF-0606-1454	1454	1704	17	36	5.4	38.4
R88L-EA-AF-0606-1550	1550	1800	18	38	5.4	40.1
R88L-EA-AF-0606-1646	1646	1896	19	40	5.4	41.8
R88L-EA-AF-0606-1742	1742	1992	20	42	5.4	43.6
R88L-EA-AF-0606-1838	1838	2088	21	44	5.4	45.3
R88L-EA-AF-0606-1934	1934	2184	22	46	5.4	47.0
R88L-EA-AF-0606-2030	2030	2280	23	48	5.4	48.8
R88L-EA-AF-0606-2126	2126	2376	24	50	5.4	50.5

Hall sensor \& temperature cable
Cable length 500 mm approx.
Connector D-Sub 9 pins (male)

Pin No.	Name
1	5 V
2	Hall U
3	Hall V
4	Hall W
5	GND
6	PTC
7	PTC
8	KTY
9	KTY
Case	Shield

Encoder cable
Cable length 500 mm approx.
Connector D -Sub 15 pins (male)

Units: mm
Power cable
Cable length 500 mm approx. Connector Hypertac
LRRA06AMRPN182 Pin article code: 021.279.1020

[^7]Plung connector:

R88L-EA-AF-0609- \square (230/400 VAC)

Linear axis model	$\begin{aligned} & \text { Effective stroke } \\ & \text { in } \mathrm{mm} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \text { in } \mathrm{mm} \end{gathered}$	n	$\begin{array}{\|c\|} \hline № \text { of mounting } \\ \text { holes } \end{array}$	Weight of moving table including motor coil (kg)	Weight of the complete axis (kg)
R88L-EA-AF-0609-0158	158	456	4	10	6.7	17.2
R88L-EA-AF-0609-0254	254	552	5	12	6.7	18.9
R88L-EA-AF-0609-0350	350	648	6	14	6.7	20.6
R88L-EA-AF-0609-0446	446	744	7	16	6.7	22.3
R88L-EA-AF-0609-0542	542	840	8	18	6.7	24.1
R88L-EA-AF-0609-0638	638	936	9	20	6.7	25.8
R88L-EA-AF-0609-0734	734	1032	10	22	6.7	27.5
R88L-EA-AF-0609-0830	830	1128	11	24	6.7	29.3
R88L-EA-AF-0609-0926	926	1224	12	26	6.7	31.0
R88L-EA-AF-0609-1022	1022	1320	13	28	6.7	32.7
R88L-EA-AF-0609-1118	1118	1416	14	30	6.7	34.5
R88L-EA-AF-0609-1214	1214	1512	15	32	6.7	36.2
R88L-EA-AF-0609-1310	1310	1608	16	34	6.7	37.9
R88L-EA-AF-0609-1406	1406	1704	17	36	6.7	39.7
R88L-EA-AF-0609-1502	1502	1800	18	38	6.7	41.4
R88L-EA-AF-0609-1598	1598	1896	19	40	6.7	43.1
R88L-EA-AF-0609-1694	1694	1992	20	42	6.7	44.9
R88L-EA-AF-0609-1790	1790	2088	21	44	6.7	46.6
R88L-EA-AF-0609-1886	1886	2184	22	46	6.7	48.3
R88L-EA-AF-0609-1982	1982	2280	23	48	6.7	50.1
R88L-EA-AF-0609-2078	2078	2376	24	50	6.7	51.8

R88L-EA-AF-06012- \square (230/400 VAC)

Linear axis model	Effective stroke in mm	$\begin{gathered} \mathrm{L} \\ \text { in } \mathrm{mm} \\ \hline \end{gathered}$	n	$\begin{array}{\|c} \hline \text { № of mounting } \\ \text { holes } \end{array}$	Weight of moving table including motor coil (kg)	$\begin{gathered} \text { Weight of the } \\ \text { complete axis (kg) } \end{gathered}$
R88L-EA-AF-0612-0110	110	456	4	10	7.9	18.3
R88L-EA-AF-0612-0206	206	552	5	12	7.9	20.0
R88L-EA-AF-0612-0302	302	648	6	14	7.9	21.7
R88L-EA-AF-0612-0398	398	744	7	16	7.9	23.4
R88L-EA-AF-0612-0494	494	840	8	18	7.9	25.2
R88L-EA-AF-0612-0590	590	936	9	20	7.9	26.9
R88L-EA-AF-0612-0686	686	1032	10	22	7.9	28.6
R88L-EA-AF-0612-0782	782	1128	11	24	7.9	30.4
R88L-EA-AF-0612-0878	878	1224	12	26	7.9	32.1
R88L-EA-AF-0612-0974	974	1320	13	28	7.9	33.8
R88L-EA-AF-0612-1070	1070	1416	14	30	7.9	35.6
R88L-EA-AF-0612-1166	1166	1512	15	32	7.9	37.3
R88L-EA-AF-0612-1262	1262	1608	16	34	7.9	39.0
R88L-EA-AF-0612-1358	1358	1704	17	36	7.9	40.8
R88L-EA-AF-0612-1454	1454	1800	18	38	7.9	42.5
R88L-EA-AF-0612-1550	1550	1896	19	40	7.9	44.2
R88L-EA-AF-0612-1646	1646	1992	20	42	7.9	46.0
R88L-EA-AF-0612-1742	1742	2088	21	44	7.9	47.7
R88L-EA-AF-0612-1838	1838	2184	22	46	7.9	49.4
R88L-EA-AF-0612-1934	1934	2280	23	48	7.9	50.2
R88L-EA-AF-0612-2030	2030	2376	24	50	7.9	52.9

R88L-EA-AF-1112- \square (230/400 VAC)

Linear axis model	Effective stroke in mm	$\begin{gathered} \mathrm{L} \\ \text { in } \mathrm{mm} \end{gathered}$	n	$\begin{aligned} & \text { № of mounting } \\ & \text { holes } \end{aligned}$	Weight of moving table including motor coil (kg)	$\begin{gathered} \text { Weight of the } \\ \text { complete axis (kg) } \end{gathered}$
R88L-EA-AF-1112-0110	110	456	4	10	13.7	31.9
R88L-EA-AF-1112-0206	206	552	5	12	13.7	35.2
R88L-EA-AF-1112-0302	302	648	6	14	13.7	38.5
R88L-EA-AF-1112-0398	398	744	7	16	13.7	41.7
R88L-EA-AF-1112-0494	494	840	8	18	13.7	45.0
R88L-EA-AF-1112-0590	590	936	9	20	13.7	48.3
R88L-EA-AF-1112-0686	686	1032	10	22	13.7	51.5
R88L-EA-AF-1112-0782	782	1128	11	24	13.7	54.8
R88L-EA-AF-1112-0878	878	1224	12	26	13.7	58.1
R88L-EA-AF-1112-0974	974	1320	13	28	13.7	61.3
R88L-EA-AF-1112-1070	1070	1416	14	30	13.7	64.6
R88L-EA-AF-1112-1166	1166	1512	15	32	13.7	67.9
R88L-EA-AF-1112-1262	1262	1608	16	34	13.7	71.1
R88L-EA-AF-1112-1358	1358	1704	17	36	13.7	74.4
R88L-EA-AF-1112-1454	1454	1800	18	38	13.7	77.7
R88L-EA-AF-1112-1550	1550	1896	19	40	13.7	80.9
R88L-EA-AF-1112-1646	1646	1992	20	42	13.7	84.2
R88L-EA-AF-1112-1742	1742	2088	21	44	13.7	87.5
R88L-EA-AF-1112-1838	1838	2184	22	46	13.7	90.8
R88L-EA-AF-1112-1934	1934	2280	23	48	13.7	94.0
R88L-EA-AF-1112-2030	2030	2376	24	50	13.7	97.3
R88L-EA-AF-1112-2126	2126	2472	25	52	13.7	100.6

Units: mm

Hall sensor \& temperature cable

Encoder cable Cable engath 500 mm mprox
Connector. .sub 15 pins (male)

Power cable

Mating connector:
Plug tyoe: LPRAOGBRERN170

R88L-EA-AF-1115- \square (230/400 VAC)

Linear axis model	Effective stroke in mm	$\begin{gathered} \mathrm{L} \\ \text { in } \mathrm{mm} \end{gathered}$	n	$\begin{aligned} & \text { № of mounting } \\ & \text { holes } \end{aligned}$	Weight of moving table including motor coil (kg)	Weight of the complete axis (kg)
R88L-EA-AF-1115-0158	158	552	5	12	15.9	37.4
R88L-EA-AF-1115-0254	254	648	6	14	15.9	40.6
R88L-EA-AF-1115-0350	350	744	7	16	15.9	43.9
R88L-EA-AF-1115-0446	446	840	8	18	15.9	47.2
R88L-EA-AF-1115-0542	542	936	9	20	15.9	50.4
R88L-EA-AF-1115-0638	638	1032	10	22	15.9	53.7
R88L-EA-AF-1115-0734	734	1128	11	24	15.9	57.0
R88L-EA-AF-1115-0830	830	1224	12	26	15.9	60.2
R88L-EA-AF-1115-0926	926	1320	13	28	15.9	63.5
R88L-EA-AF-1115-1022	1022	1416	14	30	15.9	66.8
R88L-EA-AF-1115-1118	1118	1512	15	32	15.9	70.0
R88L-EA-AF-1115-1214	1214	1608	16	34	15.9	73.3
R88L-EA-AF-1115-1310	1310	1704	17	36	15.9	76.6
R88L-EA-AF-1115-1406	1406	1800	18	38	15.9	79.8
R88L-EA-AF-1115-1502	1502	1896	19	40	15.9	83.1
R88L-EA-AF-1115-1598	1598	1992	20	42	15.9	86.4
R88L-EA-AF-1115-1694	1694	2088	21	44	15.9	89.6
R88L-EA-AF-1115-1790	1790	2184	22	46	15.9	92.9
R88L-EA-AF-1115-1886	1886	2280	23	48	15.9	96.2
R88L-EA-AF-1115-1982	1982	2376	24	50	15.9	99.4
R88L-EA-AF-1115-2078	2078	2472	25	52	15.9	102.7
R88L-EA-AF-1115-2174	2174	2568	26	54	15.9	106.0

Optional serial converter unit
Specifications

Serial converter model R88A-		SC01K-E	SC02K-E
Description		Serial converter from 1 Vpp to G5 serial data transmission and with hall sensor input	
Temperature sensor		KTY sensor detection of iron-core motor coil	NTC sensor detection of ironless motor coil
Electrical characteristics	Power supply voltage	5 VDC, max. 250 mA supplied by the drive	
	Standard resolution	Interpolation factor 100 plus quadrature count	
	Max. input frequency	400 kHz 1 Vpp	
	Analog input signals (cos, sin, Ref)	Differential input amplitude: 0.4 V to 1.2 V Input signal level: 1.5 V to 3.5 V	
	Output signals	Position data, hall \& temperature sensor information, and alarms	
	Output method	Serial data transmission	
	Transmission cycle	$<42 \mu \mathrm{~s}$	
Mechanical characteristics	Vibration resistance	$98 \mathrm{~m} / \mathrm{s}^{2}$ max. (1 to 2500 Hz) in three directions	
	Shock resistance	$980 \mathrm{~m} / \mathrm{s}^{2}$, (11 ms) two times in three directions	
Environmental conditions	Operating temperature	0 to $55^{\circ} \mathrm{C}$	
	Storage temperature	-20 to $80^{\circ} \mathrm{C}$	
	Humidity	20\% to 90% relative humidity (without condensation)	

CN4
Serial data output to linear servo drive

Connector D-Sub 15-pin (male)

Pin No.	Signal
1	PS
2	/PS
3	Not used
4	Not used
5	Not used
6	Not used
7	Not used
8	5 V
9	0 V
10	Not used
11	Not used
12	Not used
13	Not used
14	Not used
15	Inner shield
Case	Shield

CN3
Temperature sensor interface
without h all sensor

Connector D-Sub 9-pin (female)

CN1
Encoder input 1Vpp
with programmable lines NUMERIK JENA standard

Connector D-Sub 15-pin (female)

Pin No.	Signal
1	SDA *
2	SCL *
3	Not used
4	/Ref signal (U0-)
5	/Cos signal (U2-)
6	/Sin signal (U1-)
7	Not used
8	5 V
9	0 V
10	Not used
11	Not used
12	Ref signal (U0)
13	Cos signal (U2)
14	Sin signal (U1)
15	Inner shield (IS)
Case	Shield

CN2
Hall \& temperature sensors interface

Connector D-Sub 9-pin (female)

Pin No.	Signal
1	5 V
2	Hall U
3	Hall V
4	Hall W
5	GND
6	PTC
7	PTC
8	KTY/ NTC
9	KTY/ NTC
Case	Shield

*Reserved. Please do not use

Note: As the 6, 7, 8, 9 pins in the CN2 and CN3 connectors are internally wired, the temperature sensor can be connected to both connectors. When the hall sensor is also required, use the same cable for hall \& temperature signals and the CN2 connector.

Ordering information

Note: The symbols (1)(2(3)... show the recommended sequence to select the servomotor, cables and serial converter for a linear motors system.

Linear motor axis

R88L-EA-AF- \square
230 VAC single phase/400 VAC three phase

Symbol	Specifications		(1) Linear motor axis model	(2) Linear servo drive	
	Rated force	Peak force		Accurax G5 EtherCAT	
				230 V	400 V
(1)(2)	48 N	120 N	R88L-EA-AF-0303- \square	R88D-KN02H-ECT-L	R88D-KN10F-ECT-L
	96 N	240 N	R88L-EA-AF-0306- \square	R88D-KN04H-ECT-L	R88D-KN10F-ECT-L
	160 N	450 N	R88L-EA-AF-0606- \square	R88D-KN08H-ECT-L	R88D-KN15F-ECT-L
	240 N	675 N	R88L-EA-AF-0609- \square	R88D-KN10H-ECT-L	R88D-KN20F-ECT-L
	320 N	900 N	R88L-EA-AF-0612- \square	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	608 N	1800 N	R88L-EA-AF-1112- \square	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L
	760 N	2250 N	R88L-EA-AF-1115- \square	R88D-KN15H-ECT-L	R88D-KN30F-ECT-L

Note: For effective stroke distances available see dimensions section.

Servo drive

(2) Refer to Accurax G5 servo drive chapter for detailed drive specifications and selection of drive accessories.

Serial converter unit

Symbol	Specifications	Model
	Serial converter unit from 1 Vpp to G5 serial data transmission (with KTY sensor detection of iron-core motor coil)	R88A-SC01K-E
	Serial converter unit from 1 Vpp to G5 serial data transmission (with NTC sensor detection of ironless motor coil)	R88A-SC02K-E

Note: If no temperature sensor is needed, then it does not matter which converter you use.

Serial converter cable to servo drive

Symbol	Specifications		Model	Appearance	
(4)	Accurax G5 drive to serial converter cable. (Connectors R88A-CNK41L and DB-15)	1.5 m	R88A-CRKN001-5CR-E		
		3 m	R88A-CRKN003CR-E		
		5 m	R88A-CRKN005CR-E		
		10 m	R88A-CRKN010CR-E		-
		15 m	R88A-CRKN015CR-E		
		20 m	R88A-CRKN020CR-E		

Power cable

Linear encoder cable to serial converter

Symbol	Specifications		Model	Appearance	
(8)	Extension cable from linear encoder to serial converter. (Connector DB-15) (This extension cable is optional)	1.5 m	R88A-CFKA001-5CR-E		
		3 m	R88A-CFKA003CR-E		
		5 m	R88A-CFKA005CR-E		
		10 m	R88A-CFKA010CR-E		
		15 m	R88A-CFKA015CR-E		

Hall and temperature sensors cable to serial converter

Symbol	Specifications		Model	Appearance	
(7)	Extension cable from hall and temperature sensors to serial converter. (Connector DB-9) (This extension cable is optional)	1.5 m	R88A-CFKB001-5CR-E		
		3 m	R88A-CFKB003CR-E		
		5 m	R88A-CFKB005CR-E		
		10 m	R88A-CFKB010CR-E		

Connectors

Specification	Model
Accurax G5 servo drive encoder connector (for CN4)	R88A-CNK41L
Hypertac power cable connector IP67	LPRA-06B-FRBN170

[^8]Cat. No. SysCat_I161E-EN-03 In the interest of product improvement, specifications are subject to change without notice.

R6Y3 \square, CR_UGD \square

Delta robot

The fastest picking system integrated in the Sysmac platform

- Robot control integrated in the NJ robotics controller
- Control of up to 8 robots by one controller
- Degrees of freedom: $3+1$ (rotational axis optional)
- Up to 200 cycle per minutes
- Model range from 450 to 1300 mm
- Up to 3 kg payload
- 3 different types of Delta robot arms available as Washdown, Delta and Mini Delta robot
- IP class range: IP65, IP67 hygienic design

System configuration

Note: Servo motors included in the Delta robot.

Specifications
Washdown Delta robot specifications

Model			R6Y31110H03067NJ5	R6Y31110L03067NJ5	R6Y30110S03067NJ5
Working volume	X, Y axis (stroke)		$\varnothing 1100 \mathrm{~mm}$		
	Z axis (stroke) ${ }^{1 /}$		300 mm (maximum Ø 1100 mm) / 450 mm (center $\varnothing 580 \mathrm{~mm}$)		
	θ axis (rotation angle)		± 180 deg (default setting, it can be changed)		-
Servo motor	Arm 1, 2, 3	Model	R88M-K1K030T-BS2		
		Capacity	1000 W		
	Rotational axis 4	Model	R88M-K10030T-S2	R88M-K05030T-S2	-
		Capacity	100 W	50 W	-
Repeatability ${ }^{\text {² }}$	X, Y, Z axis		$\pm 0.2 \mathrm{~mm}$		
	θ axis		$\pm 0.1 \mathrm{deg}$		-
Maximum payload			3 kg		
Maximum through-put ${ }^{\text {³ }}$			$150 \mathrm{CPM}^{\text {² }}$		
θ axis tolerable moment of inertia ${ }^{\text {5 }}$			$0.035 \mathrm{kgm}^{2}$	$0.01 \mathrm{kgm}^{2}$	-
User tubing (outer diameter)			06		
Travel limit			1. Soft limit, 2. Mechanical stopper ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axis)		
Noise level			$<73.7 \mathrm{~dB}$ (A)		
Ambient temperature			0 to $45^{\circ} \mathrm{C}$		
Relative humidity			Max. 85\%		
Protection class			IP67		
Weight (kg)			75 kg		

${ }^{1}$ For further details please check the dimensional drawing in the next section.
2 This is the value at a constant ambient temperature.
${ }^{3}$ With 0.1 kg payload. When reciprocating 305 mm in horizontal and 25 mm in vertical directions.
*4 CPM: Cycle per minutes. Check the note 3 for the cycle definition.
5 There are limits to acceleration coefficient settings.

Delta robot XL / Delta robot specifications

Model			CR_UGD4_XL_R	CR_UGD4_XL_NR	CR_UGD4_R	\|CR_UGD4_NR
Working volume	X, Y axis (stroke)		$\varnothing 1300 \mathrm{~mm}$		$\bigcirc 1100 \mathrm{~mm}$	
	Z axis (stroke) ${ }^{1 /}$		$\begin{aligned} & 250 \mathrm{~mm} \text { (maximum Ø } 1300 \mathrm{~mm}) \\ & 400 \mathrm{~mm} \text { (center } \varnothing 875 \mathrm{~mm} \text {) } \\ & \hline \end{aligned}$		250 mm (maximum $\varnothing 1100 \mathrm{~mm}$) 400 mm (center Ø 580 mm)	
	θ axis (rotation angle)		± 180 deg (default setti can be changed)		± 180 deg (default setti can be changed)	$7-$
Servo motor	Arm 1, 2, 3	Model	R88M-K1K030T-BS2			
		Capacity	1000 W			
	Rotational axis 4	Model	R88M-K1K030T-BS2	-	R88M-K1K030T-BS2	-
		Capacity	1000 W	-	1000 W	-
Repeatability ${ }^{2}$	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axis		$\pm 0.2 \mathrm{~mm}$		$\pm 0.3 \mathrm{~mm}$	
	θ axis		$\pm 0.3 \mathrm{deg}$2 kg		$\pm 0.4 \mathrm{deg}$	
Maximum payload						
Maximum through-put ${ }^{*}$			$120 \mathrm{CPM}^{*} 4$		150 CPM $^{*} 4$	
θ axis maximum torque			According to the servo motor	-	According to the servo motor	
User tubing (outer diameter)			$\varnothing 8^{5}$			
Travel limit			1. Soft limit, 2. Mechanical stopper (X, Y, Z axis)			
Noise level			$<68 \mathrm{~dB}$ (A)			
Ambient temperature			$5^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$			
Relative humidity			Max. 90\%			
Protection class			IP65			
Weight (kg)			65 kg			

*1 For further details please check the dimensional drawing in the next section.
2 This is the value at a constant ambient temperature
${ }^{*} 3$ With 0.1 kg payload. When reciprocating 305 mm in horizontal and 25 mm in vertical directions.
*4 CPM: Cycle per minutes. Check the note 3 for the cycle definition.
${ }^{5}$ Only for the air suctioning. The air injection is not allowed.

Washdown Mini Delta robot / Mini Delta robot specifications

Model			CR_UGD4MINI_R \square	\|CR_UGD4MINI_NR \square
Working volume	X, Y axis (stroke)		$\varnothing 500 \mathrm{~mm}$	
	$\text { Z axis (stroke) }{ }^{\pi}$		135 mm (maximum Ø 450 mm)	155 mm (maximum Ø 500 mm)
	θ axis (rotation angle)		$\begin{aligned} & \pm 180 \mathrm{deg} \\ & \text { (default setting, it can be changed) } \end{aligned}$	-
Servo motor	Arm 1, 2, 3	Model	R88M-K40030T-BS2	
		Capacity	400 W	
	Rotational axis 4	Model	R88M-K40030T-BS2	-
		Capacity	400 W	-
Repeatability ${ }^{\text {² }}$	X, Y, Z axis		$\pm 0.2 \mathrm{~mm}$	
	θ axis		$\pm 0.3 \mathrm{deg}$	-
Maximum payload			1 kg	
Maximum through-put ${ }^{3}$			$200 \mathrm{CPM}^{4}$	
θ axis maximum torque			According to the servo motor	-
User tubing (outer diameter)			Ø 8^{5}	
Travel limit			1. Soft limit, 2. Mechanical stopper ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axis)	
Noise level			<68 dB (A)	
Ambient temperature			$5^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$	
Relative humidity			Max. 90\%	
Protection class			IP65	
Weight (kg)			25 kg	

*1 For further details please check the dimensional drawing in the next section.
*2 This is the value at a constant ambient temperature.
${ }^{*} 3$ With 0.1 kg payload. When reciprocating 305 mm in horizontal and 25 mm in vertical directions.
*4 CPM: Cycle per minutes. Check the note 3 for the cycle definition.
*5 Only for the air suctioning. The air injection is not allowed.

Dimensions

Washdown Delta robot dimensions

R6Y31110 $\square 03067 \mathrm{NJ5}$ (3 axes + 1 rotational axis)

Note: The three areas of the robot base are available for mounting. Leave other area unoccupied for other needs (e.g. wiring). Also note the locations of the eyebolts when designing a mounting frame. Any part of end-effector should not stick out above the surface of B.

R6Y30110S03067NJ5 (3 axes)

Note: The three areas of the robot base are available for mounting. Leave other area unoccupied for other needs (e.g. wiring). Also note the locations of the eyebolts when designing a mounting frame. Any part of end-effector should not stick out above the surface of B.

Delta robot XL dimensions
CR_UGD4_XL_ \square R

Gripper dimensions

Delta robot dimensions

CR UGD4 \square R

Gripper dimensions

Washdown Mini Delta robot / Mini Delta robot dimensions

CR_UGD4MINI_ \square R \square

Gripper dimensions

Ordering information

Note: Servo motors included in the Delta robot.

Delta robot

Symbol	Model	Max. payload	Working range	Description	Axis	Applicable servo (2) drive
(1)	R6Y31110H03067NJ5	3 kg	$\bigcirc 1100 \times 450 \mathrm{~mm}$	$3+1$ axes (high inertia rotational axis)	Arm 1	R88D-KN15H-ECT
					Arm 2	R88D-KN15H-ECT
					Arm 3	R88D-KN15H-ECT
					Rotational 4	R88D-KN01H-ECT
	R6Y31110L03067NJ5			$3+1$ axes (low inertia rotational axis)	Arm 1	R88D-KN15H-ECT
					Arm 2	R88D-KN15H-ECT
					Arm 3	R88D-KN15H-ECT
					Rotational 4	R88D-KN01H-ECT
	R6Y30110S03067NJ5			3 axes	Arm 1	R88D-KN15H-ECT
					Arm 2	R88D-KN15H-ECT
					Arm 3	R88D-KN15H-ECT
(1)$\frac{1}{4}$	CR_UGD4MINI_R_TS	1 kg	$\varnothing 450 \times 135 \mathrm{~mm}$	$3+1$ axes	Arm 1	R88D-KN04H-ECT
					Arm 2	R88D-KN04H-ECT
					Arm 3	R88D-KN04H-ECT
					Rotational 4	R88D-KN04H-ECT
	CR_UGD4MINI_NR_TS		$\bigcirc 500 \times 155 \mathrm{~mm}$	3 axes	Arm 1	R88D-KN04H-ECT
Washdown Mini Delta robot					Arm 2	R88D-KN04H-ECT
					Arm 3	R88D-KN04H-ECT
(1)	CR_UGD4_XL_R	2 kg	$\varnothing 1300 \times 400 \mathrm{~mm}$	$3+1$ axes	Arm 1	R88D-KN15H-ECT
					Arm 2	R88D-KN15H-ECT
					Arm 3	R88D-KN15H-ECT
					Rotational 4	R88D-KN15H-ECT
	CR_UGD4_XL_NR			3 axes	Arm 1	R88D-KN15H-ECT
					Arm 2	R88D-KN15H-ECT
					Arm 3	R88D-KN15H-ECT
(1)	CR_UGD4_R	2 kg	Ø1100 x 400 mm	$3+1$ axes	Arm 1	R88D-KN15H-ECT
					Arm 2	R88D-KN15H-ECT
					Arm 3	R88D-KN15H-ECT
					Rotational 4	R88D-KN15H-ECT
	CR_UGD4_NR			3 axes	Arm 1	R88D-KN15H-ECT
					Arm 2	R88D-KN15H-ECT
					Arm 3	R88D-KN15H-ECT
(1) Mini Delta robot	CR_UGD4MINI_R	1 kg	$\bigcirc 450 \times 135 \mathrm{~mm}$	$3+1$ axes	Arm 1	R88D-KN04H-ECT
					Arm 2	R88D-KN04H-ECT
					Arm 3	R88D-KN04H-ECT
					Rotational 4	R88D-KN04H-ECT
	CR_UGD4MINI_NR		Ø $500 \times 155 \mathrm{~mm}$	3 axes	Arm 1	R88D-KN04H-ECT
					Arm 2	R88D-KN04H-ECT
					Arm 3	R88D-KN04H-ECT

Encoder cables

Symbol	Applicable Delta robots		Model	Appearance
(3)	- Washdown Delta robot - Delta robot XL - Delta robot	1.5 m	R88A-CRKC001-5NR-E	
		3 m	R88A-CRKC003NR-E	
		5 m	R88A-CRKC005NR-E	
		10 m	R88A-CRKC010NR-E	
		15 m	R88A-CRKC015NR-E	
		20 m	R88A-CRKC020NR-E	
	- Washdown Mini Delta robot - Mini Delta robot	1.5 m	R88A-CRKA001-5CR-E	
		3 m	R88A-CRKA003CR-E	
		5 m	R88A-CRKA005CR-E	
		10 m	R88A-CRKA010CR-E	
		15 m	R88A-CRKA015CR-E	
		20 m	R88A-CRKA020CR-E	

Absolute encoder battery cable (encoder extension cable only)

Symbol	Specifications			Model	Appearance
(4)	Absolute encoder battery cable	Battery not included Battery included	0.3 m 0.3 m	R88A-CRGD0R3C-E R88A-CRGD0R3C-BS-E	
	Absolute encoder backup battery	2.000 mA.h, 3.6 V	-	R88A-BAT01G	0

Power cables

Vision

Name	Type	Model	
(6) FQ-M series	Color	NPN	FQ-MS120-ECT
		PNP	FQ-MS125-ECT
	Monochrome	NPN	FQ-MS120-M-ECT
		PNP	FQ-MS125-M-ECT

Machine controller

Name	Delta robot	Axes	Model	
7	C) NJ Robotics	CPU unit	Control of up to 8 Delta robot depending on the number of axes supported by the CPU	64
		32	NJ501-4500	
	Control of one Delta robot	16	NJ501-4400	

Computer software

Specifications	Model
Sysmac Studio version 1.03 or higher	SYSMAC-SE2 $\square \square \square$

3G3RX \square

RX frequency inverter

Customised to your machine

- Up to 132 kW
- High starting torque in open loop: 200% at 0.3 Hz
- Full torque at 0 Hz in closed loop
- Sensor-less and vector closed-loop control
- Double rating VT 120\%/1 min and CT 150\%/1 min
- Built-in EMC filter
- Built-in application functionality
- Indexer functionality
- Automatic energy saving
- Micro-surge voltage suppression
- CE, cULus, RoHS

Ratings

- 200 V Class three-phase 0.4 to 55 kW
- 400 V Class three-phase 0.4 to 132 kW

System configuration

[^9]
Type designation

200 V class

Three-phase: 3G3RX- \square				A2004	A2007	A2015	A2022	A2037	A2055	A2075	A2110	A2150	A2185	A2220	A2300	A2370	A2450	A2550
Max. applicable motor 4P kW* ${ }^{\text {¹ }}$			at CT	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
			at VT	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75
	Inverter capacity kVA	200 V	at CT	1.0	1.7	2.5	3.6	5.7	8.3	11	15.9	22.1	26.3	32.9	41.9	50.2	63	76.2
			at VT	1.3	2.1	3.2	4.1	6.7	10.4	15.2	20	26.3	29.4	39.1	49.5	59.2	72.7	93.5
		240 V	at CT	1.2	2.0	3.1	4.3	6.8	9.9	13.3	19.1	26.6	31.5	39.4	50.2	60.2	75.6	91.4
			at VT	1.5	2.6	3.9	5.0	8.1	12.4	18.2	24.1	31.5	35.3	46.9	59.4	71	87.2	112.2
	Rated output current (A)		at CT	3.0	5.0	7.5	10.5	16.5	24	32	46	64	76	95	121	145	182	220
			at VT	3.7	6.3	9.4	12	19.6	30	44	58	73	85	113	140	169	210	270
	Max. output voltage			Proportional to input voltage: 0 to 240 V														
	Max. output fre	equency		400 Hz														
	Rated input voltage and frequency			3-phase 200 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$														
	Allowable voltage fluctuation			-15% to $+10 \%$														
	Allowable frequency fluctuation			5\%														
	Regenerative braking			Internal BRD circuit (external discharge resistor)											External regenerative braking unit			
	Minimum connectable resistance			50	50	35	35	35	16	10	10	7.5	7.5	5				
Protective structure				IP20														
Cooling method				Forced air cooling														

*1 Based on a standard 3-Phase standard motor

400 V class

Three-phase: 3G3RX- \square				A4004	A4007	A4015	A4022	A4040	A4055	A4075	A4110	A4150	A4185	A4220	A4300	A4370	A4450	A4550	B4750	B4900	B411K	B413K
Max. applicable motor 4P kW ${ }^{* 1}$			at CT	0.4	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132
			at VT	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160
	Inverter capacity kVA	400 V	at CT	1.0	1.7	2.5	3.6	6.2	9.7	13.1	17.3	22.1	26.3	33.2	40.1	51.9	63	77.6	103.2	121.9	150.3	180.1
			at VT	1.3	2.1	3.3	4.6	7.7	11	15.2	20.9	25.6	30.4	39.4	48.4	58.8	72.7	93.5	110.8	135	159.3	200.9
		480 V	at CT	1.2	2.0	3.1	4.3	7.4	11.6	15.8	20.7	26.6	31.5	39.9	48.2	62.3	75.6	93.1	128.3	146.3	180.4	216.1
			at VT	1.5	2.5	4.0	5.5	9.2	13.3	18.2	24.1	30.7	36.5	47.3	58.1	70.6	87.2	112.2	133	162.1	191.2	241.1
	Rated output current (A)		at CT	1.5	2.5	3.8	5.3	9.0	14	19	25	32	38	48	58	75	91	112	149	176	217	260
			at VT	1.9	3.1	4.8	6.7	11.1	16	22	29	37	43	57	70	85	105	135	160	195	230	290
	Max. output voltage			Proportional to input voltage: 0 to 480 V																		
	Max. output frequency			400 Hz																		
	Rated input voltage and frequency			3-phase 380 to $480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$																		
	Allowable voltage fluctuation			-15\% to +10\%																		
	Allowable frequency fluctuation			5\%																		
	Regenerative braking			Internal BRD circuit (external discharge resistor)											External regenerative braking unit							
	Minimum connectable resistance			100	100	100	100	70	70	35	35	24	24	20								
Protective structure				IP20															IP00			
Cooling method				Forced air cooling																		

[^10]
Common specifications

	Model number 3G3RX	Specifications
	Motor control	Phase-to-phase sinusoidal pulse with modulation PWM (Sensorless vector control, close loop vector with motor feedback, V/F)
	Control mode	Speed, torque and indexer functionality
	Output frequency range	0.10 to 400.00 Hz
		Digital set value: $\pm 0.01 \%$ of the max. frequency
	Frequency precision	Analogue set value: $\pm 0.2 \%$ of the max. frequency ($25 \pm 10^{\circ} \mathrm{C}$)
		Digital set value: 0.01 Hz
	Resolution of frequency set value	Analog input: 12 bit
	Resolution of output frequency	0.01 Hz
	Starting torque	$150 \% / 0.3 \mathrm{~Hz}$ (under sensor-less vector control or sensor-less vector control at 0 Hz)
	Starting torque	$200 \% /$ Torque at 0 Hz (under sensor-less vector control at 0Hz, when a motor size one rank lower than specified is connected)
	Overload capability	150\%/60 s, $200 \% / 3 \mathrm{~s}$ for CT; $120 \% / 60 \mathrm{~s} \mathrm{VT}$
	Frequency set value	0 to $10 \mathrm{VDC}(10 \mathrm{~K} \Omega),-10$ to $10 \mathrm{VDC}(10 \mathrm{~K} \Omega)$, 4 to $20 \mathrm{~mA}(100 \Omega)$, EtherCAT communications
	V/f Characteristics	V/f optionally changeable at base frequencies of 30 to 400 Hz , V/f braking constant torque, reduction torque, sensor-less vector control, sensor-less vector control at 0 Hz
	Inputs signals	8 terminals, NO/NC switchable, sink/source logic switchable [Terminal function] 8 functions can be selected from among 61. Reverse (RV), Multi-step speed setting binary 1 (CF1), Multi-step speed setting binary 2 (CF2), Multi-step speed setting binary 3 (CF3), Multi-step speed setting binary 4 (CF4), Jogging (JG), DC injection braking (DB), 2nd control (SET), 2-step acceleration/deceleration (2CH), Free-run stop (FRS), External trip (EXT), USP function (USP), Commercial switching (CS), Soft lock (SFT), Analog input switching (AT), 3rd control (SET3), Reset (RS), 3-wire start (STA), 3-wire stop (STP), 3-wire forward/reverse (F/R), PID enabled/disabled (PID), PID integral reset (PIDC), Control gain switching (CAS), UP/DWN function accelerated (UP), UP/DWN function decelerated (DWN), UP/DWN function data clear (UDC), Forced operator (OPE), Multi-step speed setting bit 1 (SF1), Multi-step speed setting bit 2 (SF2), Multi-step speed setting bit 3 (SF3), Multi-step speed setting bit 4 (SF4), Multi-step speed setting bit 5 (SF5), Multi-step speed setting bit 6 (SF6), Multi-step speed setting bit 7 (SF7), Overload limit switching (OLR), Torque limit enabled (TL), Torque limit switching 1 (TRQ1), Torque limit switching 2 (TRQ2), P/PI switching (PPI), Brake confirmation (BOK), Orientation (ORT), LAD cancel (LAC), Position deviation clear (PCLR), Pulse train position command input permission (STAT), Frequency addition function (ADD), Forced terminal block (F-TM), Torque reference input permission (ATR), Integrated power clear (KHC), Servo ON (SON), Preliminary excitation (FOC), Analog command on hold (AHD), Position command selection 1 (CP1), Position command selection 2 (CP2), Position command selection 3 (CP3), Zero return limit signal (ORL), Zero return startup signal (ORG), Forward driving stop (FOT), Reverse driving stop (ROT), Speed/Position switching (SPD), Pulse counter (PCNT), Pulse counter clear (PCC), No allocation (no)
	Output signals	5 open collector output terminals: NO/NC switchable, sink/source logic switchable 1 relay (SPDT contact) output terminal: NO/NC switchable [Terminal function] 6 functions can be selected from among 45. Signal during RUN (RUN), Constant speed arrival signal (FA1), Over set frequency arrival signal (FA2), Overload warning (OL), Excessive PID deviation (OD), Alarm signal (AL), Set-frequency-only arrival signal (FA3), Overtorque (OTQ), Signal during momentary power interruption (IP), Signal during undervoltage (UV), Torque limit (TRQ), RUN time exceeded (RNT), Power ON time exceeded (ONT), Thermal warning (THM), Brake release (BRK), Brake error (BER), $0-\mathrm{Hz}$ signal (ZS), Excessive speed deviation (DSE), Position ready (POK), Set frequency exceeded 2 (FA4), Set frequency only 2 (FA5), Overload warning 2 (OL2), Analog FV disconnection detection (FVDc), Analog FI disconnection detection (FIDc), Analog FE disconnection detection (FEDc), PID FB status output (FBV), Network error (NDc), Logic operation output 1 (LOG1), Logic operation output 2 (LOG2), Logic operation output 3 (LOG3), Logic operation output 4 (LOG4), Logic operation output 5 (LOG5), Logic operation output 6 (LOG6), Capacitor life warning (WAC), Cooling fan life warning (WAF), Starting contact signal (FR), Fin overheat warning (OHF), Light load detection signal (LOC), Operation ready (IRDY), Forward run (FWR), Reverse run (RVR), Fatal fault (MJA), Window comparator FV (WCFV), Window comparator FI (WCFI), Window comparator FE (WCFE), Alarm codes 0 to 3 (AC0 to AC3)
	Standard functions	V/f free setting (7), Upper/lower frequency limit, Frequency jump, Curve acceleration/deceleration, Manual torque boost level/ break, Energy-saving operation, Analog meter adjustment, Starting frequency, Carrier frequency adjustment, Electronic thermal function, (free setting available), External start/end (frequency/rate), Analog input selection, Trip retry, Restart during momentary power interruption, Various signal outputs, Reduced voltage startup, Overload limit, Initialization value setting, Automatic deceleration at power-off, AVR function, Automatic acceleration/deceleration, Auto tuning (Online/Offline), High torque multi-motor operation control (sensor-less vector control of two monitors with one inverter)
	Analogue inputs	Analogue inputs 0 to 10 V and -10 to $10 \mathrm{~V}(10 \mathrm{~K} \Omega), 4$ to $20 \mathrm{~mA}(100 \Omega)$
	Analogue outputs	Analog voltage output, Analog current output, Pulse train output
	Accel/Decel times	0.01 to 3600.0 s (line/curve selection)
		Status indicator LED's Run, Program, Power, Alarm, Hz, Amps, Volts, \%
	Display	Digital operator: Available to monitor 23 items, output current, output frequency...
号	Motor overload protection	Electronic Thermal overload relay and PTC thermistor input
	Instantaneous overcurrent	200\% of rated current for 3 seconds
	Overload	150\% for 1 minute
	Overvoltage	800 V for 400 V type and 400 V for 200 V type
	Momentary power loss	Decelerates to stop with DC bus controlled, coast to stop
	Cooling fin overheat	Temperature monitor and error detection
	Stall prevention level	Stall prevention during acceleration, deceleration and constant speed
	Ground fault	Detection at power on
	Power charge indication	On when voltage between P and N is higher than 45 V
	Degree of protection	IP20/IP00
	Ambient humidity	90\% RH or less (without condensation)
	Storage temperature	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ (short-term temperature during transportation)
	Ambient temperature	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
	Installation	Indoor (no corrosive gas, dust, etc.)
	Installation height	Max. 1000 m
	Vibration	3G3RX-A $\square 004$ to AD220, $5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10$ to 55 Hz 3G3RX-A $\square 300$ to BD13K, $2.94 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10$ to 55 Hz

Dimensions

Figure 1

Figure 2

Figure 5

Voltage class	Inverter model 3G3RX \square	Figure	Dimensions in mm								
			W	W1	W2	H	H1	D	D1	D2	Weight (kg)
Three-phase 200 V	A2004	1	150	130	143	255	241	140	62	-	3.5
	A2007										
	A2015										
	A2022										
	A2037										
	A2055	2	210	189	203	260	246	170	82	13.6	6
	A2075										
	A2110										
	A2150	3	250	229	244	390	376	190	83	9.5	14
	A2185										
	A2220										
	A2300	4	310	265	-	540	510	195	-	-	20
	A2370		390	300	-	550	520	250	-	-	30
	A2450										
	A2550		480	380	-	700	670	250	-	-	43
Three-phase 400 V	A4004	1	150	130	143	255	241	140	62	-	3.5
	A4007										
	A4015										
	A4022										
	A4040										
	A4055	2	210	189	203	260	246	170	82	13.6	6
	A4075										
	A4110										
	A4150	3	250	229	244	390	376	190	83	9.5	14
	A4185										
	A4220										
	A4300	4	310	265	-	540	510	195	-	-	22
	A4370		390	300	-	550	520	250	-	-	30
	A4450										
	A4550										
	B4750	5	390	300	-	700	670	270	-	-	60
	B4900										
	B411K		480	380	-	740	710	270	-	-	80
	B413K										

Rasmi filters

Footprint dimensions

Book type dimensions

Block type dimensions

Voltage	Inverter model	Rasmi model	Dimensions						Filter type	Weight (kg)
			L	W	H	X	Y	M		
$3 \times 200 \mathrm{~V}$	3G3RX-A2004	AX-FIR2018-RE	305	152	45	290	110	M5	Footprint	2.0
	3G3RX-A2007									
	3G3RX-A2015									
	3G3RX-A2022									
	3G3RX-A2037									
	3G3RX-A2055	AX-FIR2053-RE	320	212	56	296	189	M6		2.5
	3G3RX-A2075									
	3G3RX-A2110									
	3G3RX-A2150	AX-FIR2110-RE	455	110	240	414	80	-	Book type	8.0
	3G3RX-A2185									
	3G3RX-A2220									
	3G3RX-A2300	AX-FIR2145-RE								8.6
	3G3RX-A2370	AX-FIR3250-RE	386	260	135	240	235	-	Block type	13
	3G3RX-A2450									
	3G3RX-A2550	AX-FIR3320-RE								13.2
$3 \times 400 \mathrm{~V}$	3G3RX-A4004	AX-FIR3010-RE	305	152	45	290	110	M5	Footprint	1.4
	3G3RX-A4007									
	3G3RX-A4015									
	3G3RX-A4022									
	3G3RX-A4040									
	3G3RX-A4055	AX-FIR3030-RE	312	212	50	296	189	M6		2.2
	3G3RX-A4075									
	3G3RX-A4110									
	3G3RX-A4150	AX-FIR3053-RE	451	252	60	435	229	M6		4.5
	3G3RX-A4185									
	3G3RX-A4220									
	3G3RX-A4300	AX-FIR3064-RE	598	310	70	578	265	M8		7.0
	3G3RX-A4370	AX-FIR3100-RE	486	110	240	414	80	-	Book type	8.0
	3G3RX-A4450	AX-FIR3130-RE								8.6
	3G3RX-A4550									
	3G3RX-B4750	AX-FIR3250-RE	386	260	135	240	235	-	Block type	13.0
	3G3RX-B4900									
	3G3RX-B411K	AX-FIR3320-RE								13.2
	3G3RX-B413K									

Input AC reactor

Voltage	Reference	Dimensions								Weight (kg)
		A	B1	B2	C1	C2	D	E	F	
200 V	AX-RAI02800100-DE	120	-	80	-	120	80	62	5.5	2.35
	AX-RAI00880200-DE									
	AX-RAI00350335-DE	180		85		190	140	55	6	5.5
	AX-RAI00180670-DE									
	AX-RAI00091000-DE					205				6.5
	AX-RAI00071550-DE			105		205		85		11.7
	AX-RAI00042300-DE	240	130	-	210	-	200	75		16.0
400 V	AX-RAI07700050-DE	120	-	70	-	120	80	52	5.5	1.78
	AX-RAI03500100-DE			80				62		2.35
	AX-RAI01300170-DE			80						2.5
	AX-RAI00740335-DE	180		85		190	140	55	6	5.5
	AX-RAI00360500-DE					205				6.5
	AX-RAI00290780-DE			105				85		11.7
	AX-RAI00191150-DE	240		110		275	200	75		16.0
	AX-RAI00111850-DE									
	AX.RAI00072700-DE		165	-	210	-		110		27.0

DC reactor

Figure 1

Figure 2

Output AC reactor

Chokes

Reference	D diameter	Motor KW	Weight						
			\mathbf{H}	\mathbf{X}	\mathbf{Y}	\mathbf{m}	$\mathbf{k g}$		
AX-FER2102-RE	21	<2.2	85	22	46	70	-	5	0.1
AX-FER2515-RE	25	<15	105	25	62	90	-	5	0.2
AX-FER5045-RE	50	<45	150	50	110	125	30	5	0.7
AX-FER6055-RE	60	<55	200	65	170	180	45	6	1.7

Braking unit dimensions

Reference	Dimensions					
	B	B1	H	H1	T	S
AX-BCR4015045-TE	82.5	40.5	150	138	220	6
AX-BCR4017068-TE						
AX-BCR2035090-TE	130	64.5	205	193	208	6
AX-BCR2070130-TE						
AX-BCR4035090-TE						
AX-BCR4070130-TE						
AX-BCR4090240-TE	131	64.5	298	280	300	9

Resistor dimensions

Fig 3

Fig 1

Fig 2

Fig 5

Type	Fig.	Dimensions							Weight
		L	H	M	I	T	G	N	kg
AX-REM00K2070-IE	1	105	27	36	94	-	-	-	0.2
AX-REM00K2120-IE									
AX-REM00K2200-IE									
AX-REM00K4075-IE		200	27	36	189	-	-	-	0.425
AX-REM00K4035-IE									
AX-REM00K4030-IE									
AX-REM00K5120-IE		260	27	36	249	-	-	-	0.58
AX-REM00K6100-IE		320	27	36	309	-	-	-	0.73
AX-REM00K6035-IE									
AX-REM00K9070-IE	2	200	61	100	74	211	40	230	1.41
AX-REM00K9020-IE									
AX-REM00K9017-IE									
AX-REM01K9070-IE	3	365	73	105	350	70	-	-	4
AX-REM01K9017-IE									
AX-REM02K1070-IE	4	310	100	240	295	210	-	-	7
AX-REM02K1017-IE									
AX-REM03K5035-IE		365	100	240	350	210	-	-	8
AX-REM03K5010-IE									
AX-REM19K0006-IE	5	206	350	140	190	50	-	-	8.1
AX-REM19K0008-IE									
AX-REM19K0020-IE									
AX-REM19K0030-IE									
AX-REM38K0012-IE		306	350	140	290	50	-	-	14.5

Standard connections

${ }^{* 1} L$ is the common reference for analog input and also for analog output.

Terminal block specifications

Terminal	Name	Function (signal level)
R/L1, S/L2, T/L3	Main circuit power supply input	Used to connect line power to the drive.
U/T1, V/T2, W/T3	Inverter output	Used to connect the motor
PD/+1, P/+	External DC reactor terminal	Normally connected by the short-circuit bar. Remove the short-circuit bar between +1 and P/+2 when a DC reactor is connected.
P/+, RB	Braking resistor connection terminals	Connect option braking resistor (if a braking torque is required)
P/+, N/-	Regenerative braking unit connection terminal	Connect optional regenerative braking units.
Θ	Grounding	For grounding (grounding should conform to the local grounding code.)

Control circuit

OmROn

Inverter heat loss

Three-phase 200 V class

Model 3G3RX-		A2004	A2007	A2015	A2022	A2037	A2055	A2075	A2110	A2150	A2185	A2220	A2300	A2370	A2450	A2550
	200 V	1.0	1.7	2.5	3.6	5.7	8.3	11.0	15.9	22.1	26.3	32.9	41.9	50.2	63.0	76.2
	240 V	1.2	2.0	3.1	4.3	6.8	9.9	13.3	19.1	26.6	31.5	39.4	50.2	60.2	75.6	91.4
Rated current (A)		3.0	5.0	7.5	10.5	16.5	24	32	46	64	76	95	121	145	182	220
	Losses at 70\% load	64	76	102	127	179	242	312	435	575	698	820	1100	1345	1625	1975
	Losses at 100\% load	70	88	125	160	235	325	425	600	800	975	1150	1550	1900	2300	2800
Efficiency at rated output		85.1	89.5	92.3	93.2	94.0	94.4	94.6	94.8	94.9	95.0	95.0	95.0	95.1	95.1	95.1
Cooling Method		Forced-air-cooling														

Three-phase 400 V class

Model 3G3RX-		A4004	A4007	A4015	A4022	A4040	A4055	A4075	A4110	A4150	A4185	A4220	A4300	A4370	A4450	A4550	B4750	B4900	B411K	B413K
	400 V	1.0	1.7	2.5	3.6	6.2	9.7	13.1	17.3	22.1	26.3	33.2	40.1	51.9	63.0	77.6	103.2	121.9	150.3	180.1
	480 V	1.2	2.0	3.1	4.3	7.4	11.6	15.8	20.7	26.6	31.5	39.9	48.2	62.3	75.6	93.1	123.8	146.3	180.4	216.1
Rated current (A)		1.5	2.5	3.8	5.3	9.0	14	19	25	32	38	48	58	75	91	112	149	176	217	260
	Losses at 70\% load	64	76	102	127	179	242	312	435	575	698	820	1100	1345	1625	1975	2675	3375	3900	4670
	Losses at 100% load	70	88	125	160	235	325	425	600	800	975	1150	1550	1900	2300	2800	3800	4800	5550	6650
Efficiency at ratedoutput		85.1	89.5	92.3	93.2	94.0	64.4	94.6	94.8	94.9	95.0	95.0	95.0	95.1	95.1	95.1	95.2	95.2	95.2	95.2
Cooling Method		Forced-air-cooling																		

Input AC reactor

3 phase 200 V class				400 V class			
Max. applicable motor output kW	Reference	$\underset{A}{\text { Current value }}$	Inductance mH	Max. applicable motor output kW	Reference	$\underset{A}{\text { Current value }}$	$\begin{gathered} \text { Inductance } \\ \mathrm{mH} \end{gathered}$
0.4 to 1.5	AX-RAI02800100-DE	10.0	2.8	0.4 to 1.5	AX-RAI07700050-DE	5.0	7.7
2.2 to 3.7	AX-RAI00880200-DE	20.0	0.88	2.2 to 3.7	AX-RAI03500100-DE	10.0	3.5
5.5 to 7.5	AX-RAIO0350335-DE	33.5	0.35	5.5 to 7.5	AX-RAI01300170-DE	17.0	1.3
11.0 to 15.0	AX-RAI00180670-DE	67.0	0.18	11.0 to 15.0	AX-RAI00740335-DE	33.5	0.74
18.5 to 22.0	AX-RAI00091000-DE	100.0	0.09	18.5 to 22.0	AX-RAI00360500-DE	50.0	0.36
30.0 to 37.0	AX-RAI00071550-DE	155.0	0.07	30.0 to 37.0	AX-RAI00290780-DE	78.0	0.29
45.0 to 55.0	AX-RAI00042300-DE	230.0	0.04	45.0 to 55.0	AX-RAI00191150-DE	115.0	0.19
				75.0 to 90.0	AX-RAI00111850-DE	185.0	0.11
				110.0 to 132.0	AX.RAI00072700-DE	270.0	0.07

DC reactor

Output AC reactor

200 V class				400 V class			
Max. applicable motor output kW*	Reference	Current value A	Inductance $\mathbf{m H}$	Max. applicable motor output kW* ${ }^{*}$	Reference	Current value A	Inductance $\mathbf{m H}$
0.4	AX-RAO11500026-DE	2.6	11.50	0.4 to 1.5	AX-RAO16300038-DE	3.8	16.30
0.75	AX-RA007600042-DE	4.2	7.60				
1.5	AX-RAO04100075-DE	7.5	4.10				
2.2	AX-RAO03000105-DE	10.5	3.00	2.2	AX-RAO11800053-DE	5.3	11.80
3.7	AX-RAO01830160-DE	16.0	1.83	4.0	AX-RAO07300080-DE	8.0	7.30
5.5	AX-RAO01150220-DE	22.0	1.15	5.5	AX-RAO04600110-DE	11.0	4.60
7.5	AX-RAO00950320-DE	32.0	0.95	7.5	AX-RAO03600160-DE	16.0	3.60
11	AX-RAO00630430-DE	43.0	0.63	11	AX-RAO02500220-DE	22.0	2.50
15	AX-RAO00490640-DE	64.0	0.49	15	AX-RAO02000320-DE	32.0	2.00
18.5	AX-RAO00390800-DE	80.0	0.39	18.5	AX-RAO01650400-DE	40.0	1.65
22	AX-RAO00330950-DE	95.0	0.33	22	AX-RAO01300480-DE	48.0	1.30
30	AX-RAO00251210-DE	121.0	0.25	30	AX-RA001030580-DE	58.0	1.03
37	AX-RAO00191450-DE	145.0	0.19	37	AX-RAO00800750-DE	75.0	0.80
45	AX-RAO00161820-DE	182.0	0.16	45	AX-RAO00680900-DE	90.0	0.68
55	AX-RAO00132200-DE	220.0	0.13	55	AX-RAO00531100-DE	110.0	0.53
				75	AX-RAO00401490-DE	149.0	0.40
				90	AX-RAO00331760-DE	176.0	0.33
				110	AX-RAO00262170-DE	217.0	0.26
				132	AX-RAO00212600-DE	260.0	0.21

*1 These motor sizes are for heavy duty applications.
Braking unit

Voltage	Reference	Specifications				
		Permanent		Peak (5 s max)		Minimum connectable resistor (Ohms)
		Current (A)	Brake power (kVA)	Current (A)	Brake power (kVA)	
200 V	AX-BCR2035090-TE	35	13	90	32	4
	AX-BCR2070130-TE	70	25	130	47	2.8
400 V	AX-BCR4015045-TE	15	11	45	33	16
	AX-BCR4017068-TE	17	13	68	51	11
	AX-BCR4035090-TE	35	26	90	67	8.5
	AX-BCR4070130-TE	70	52	130	97	5.5
	AX-BCR4090240-TE	90	67	240	180	3.2

Ordering information

${ }^{1}$ The 5 lines LCD digital operator is provided with the inverter from factory.
${ }^{2}$ When a communication option board is mounted, there are two options: mount a blind cover or a LED digital operator.

3G3RX

Specifications					Model	Specifications					Model
Voltage class	Constant torque		Variable torque		Standard	Voltage class	Constant torque		Variable torque		Standard
	Max motor kW	Rated current A	Max motor kW	Rated current A			Max motor kW	Rated current A	Max motor kW	Rated current A	
Three-phase200 V 200 V	0.4	3.0	0.75	3.7	3G3RX-A2004-E1F	$\begin{aligned} & \text { Three-phase } \\ & 400 \mathrm{~V} \end{aligned}$	0.4	1.5	0.75	1.9	3G3RX-A4004-E1F
	0.75	5.0	1.5	6.3	3G3RX-A2007-E1F		0.75	2.5	1.5	3.1	3G3RX-A4007-E1F
	1.5	7.5	2.2	9.4	3G3RX-A2015-E1F		1.5	3.8	2.2	4.8	3G3RX-A4015-E1F
	2.2	10.5	4.0	12	3G3RX-A2022-E1F		2.2	5.3	4.0	6.7	3G3RX-A4022-E1F
	4.0	16.5	5.5	19.6	3G3RX-A2037-E1F		4.0	9.0	5.5	11.1	3G3RX-A4040-E1F
	5.5	24	7.5	30	3G3RX-A2055-E1F		5.5	14	7.5	16	3G3RX-A4055-E1F
	7.5	32	11	44	3G3RX-A2075-E1F		7.5	19	11	22	3G3RX-A4075-E1F
	11	46	15	58	3G3RX-A2110-E1F		11	25	15	29	3G3RX-A4110-E1F
	15	64	18.5	73	3G3RX-A2150-E1F		15	32	18.5	37	3G3RX-A4150-E1F
	18.5	76	22	85	3G3RX-A2185-E1F		18.5	38	22	43	3G3RX-A4185-E1F
	22	95	30	113	3G3RX-A2220-E1F		22	48	30	57	3G3RX-A4220-E1F
	30	121	37	140	3G3RX-A2300-E1F		30	58	37	70	3G3RX-A4300-E1F
	37	145	45	169	3G3RX-A2370-E1F		37	75	45	85	3G3RX-A4370-E1F
	45	182	55	210	3G3RX-A2450-E1F		45	91	55	105	3G3RX-A4450-E1F
	55	220	75	270	3G3RX-A2550-E1F		55	112	75	135	3G3RX-A4550-E1F
	-						75	149	90	160	3G3RX-B4750-E1F
						90	176	110	195	3G3RX-B4900-E1F	
						110	217	132	230	3G3RX-B411K-E1F	
						132	260	160	290	3G3RX-B413K-E1F	

(1) Line filters

Rasmi Line filter									
200V					400V				
Model 3G3RX- \square	Reference	Rated current (A)	Leakage Nom/max	kg	Model 3G3RX- \square	Reference	$\begin{array}{\|c\|} \hline \text { Rated } \\ \text { current (A) } \end{array}$	Leakage Nom/max	kg
$\begin{gathered} \hline \text { A2004/A2007/A2015/ } \\ \text { A2022/A2037 } \\ \hline \end{gathered}$	AX-FIR2018-RE	18	0.7/40 mA	2.0	$\begin{gathered} \hline \text { A4004/A4007/A4015/ } \\ \text { A4022/A4040 } \\ \hline \end{gathered}$	AX-FIR3010-RE	10	0.3/40 mA	1.9
A2055/A2075/A2110	AX-FIR2053-RE	53	0.7/40 mA	2.5	A4055/A4075/A4110	AX-FIR3030-RE	30	$0.3 / 40 \mathrm{~mA}$	2.2
A2150/A2185/A2220	AX-FIR2110-RE	110	1.2/70 mA	8.0	A4150/A4185/A4220	AX-FIR3053-RE	53	$0.8 / 70 \mathrm{~mA}$	4.5
A2300	AX-FIR2145-RE	145	1.2/70 mA	8.6	A4300	AX-FIR3064-RE	64	$3 / 160 \mathrm{~mA}$	7.0
A2370/A2450	AX-FIR3250-RE	250	6/300 mA	13.0	A4370	AX-FIR3100-RE	100	2/130 mA	8.0
A2550	AX-FIR3320-RE	320	6/300 mA	13.2	A4450/A4550	AX-FIR3130-RE	130	2/130 mA	8.6
-					A4750/A4900	AX-FIR3250-RE	250	10/500 mA	13.0
					A411K/A413K	AX-FIR3320-RE	320	10/500 mA	13.2

(1) Input AC reactors

Voltage			
3-phase 200 VAC		3-phase 400 VAC	
Inverter Model 3G3RX- \square	AC Reactor Reference	Inverter Model 3G3RX- \square	AC Reactor Reference
A2004/A2007/A2015	AX-RAIO2800100-DE	A4004/A4007/A4015	AX-RAIO7700050-DE
A2022/A2037	AX-RAI00880200-DE	A4022/A4040	AX-RAI03500100-DE
A2055/A2075	AX-RAI00350335-DE	A4055/A4075	AX-RAI01300170-DE
A2110/A2150	AX-RAI00180670-DE	A4110/A4150	AX-RAI00740335-DE
A2185/A2220	AX-RAI00091000-DE	A4185/A4220	AX-RAI00360500-DE
A2300/A2370	AX-RAI00071550-DE	A4300/A4370	AX-RAI00290780-DE
A2450/A2550	AX-RAI00042300-DE	A4450/A4550	AX-RAI00191150-DE
	A4750/A4900	AX-RAIO0111850-DE	

(1) DC reactors

Voltage			
3-phase 200 VAC		3-phase 400 VAC	
Inverter Model 3G3RX- \square	AC Reactor Reference	Inverter Model 3G3RX- \square	AC Reactor Reference
A2004	AX-RC10700032-DE	A4004	AX-RC43000020-DE
A2007	AX-RC06750061-DE	A4007	AX-RC27000030-DE
A2015	AX-RC03510093-DE	A4015	AX-RC14000047-DE
A2022	AX-RC02510138-DE	A4022	AX-RC10100069-DE
A2037	AX-RC01600223-DE	A4040	AX-RC06400116-DE
A2055	AX-RC01110309-DE	A4055	AX-RC04410167-DE
A2075	AX-RC00840437-DE	A4075	AX-RC03350219-DE
A2110	AX-RC00590614-DE	A4110	AX-RC02330307-DE
A2150	AX-RC00440859-DE	A4150	AX-RC01750430-DE
A2185/A2220	AX-RC00301275-DE	A4185/A4220	AX-RC01200644-DE
A2300	AX-RC00231662-DE	A4300	AX-RC00920797-DE
A2370	AX-RC00192015-DE	A4370	AX-RC00741042-DE
A2450	AX-RC00162500-DE	A4450	AX-RC00611236-DE
A2550	AX-RC00133057-DE	A4550	AX-RC00501529-DE
		A4750	AX-RC00372094-DE
		A4900	AX-RC00312446-DE
		A411K	AX-RC00252981-DE
		A413K	AX-RC00213613-DE

(1) Chokes

Model	Diameter	Description
AX-FER2102-RE	21	For 2.2 kW motors or below
AX-FER2515-RE	25	For 15 kW motors or below
AX-FER5045-RE	50	For 45 kW motors or below
AX-FER6055-RE	60	For 55 kW motors or above

(1) Output AC reactor

Voltage			
200V		400V	
Model 3G3RX- \square	Reference	Model 3G3RX- \square	Reference
A2004	AX-RAO11500026-DE		
A2007	AX-RAO07600042-DE	A4004/A4007/A4015	AX-RAO16300038-DE
A2015	AX-RAO04100075-DE		
A2022	AX-RAO03000105-DE	A4022	AX-RAO11800053-DE
A2037	AX-RAO01830160-DE	A4040	AX-RAO07300080-DE
A2055	AX-RAO01150220-DE	A4055	AX-RAO04600110-DE

Voltage			
Model 3G3RX- \square	Reference	Model 3G3RX- \square	400V
A2075	AX-RAO00950320-DE	A4075	Reference
A2110	AX-RAO00630430-DE	A4110	AX-RAO03600160-DE
A2150	AX-RAO00490640-DE	A4150	AX-RAO02500220-DE
A2185	AX-RAO00390800-DE	A4185	AX-RAO02000320-DE
A2220	AX-RAO00330950-DE	A4220	AX-RAO01650400-DE
A2300	AX-RAO00251210-DE	A4300	AX-RAO01300480-DE
A2370	AX-RAO00191450-DE	A4370	AX-RAO01030580-DE
A2450	AX-RAO00161820-DE	A4450	AX-RAO00800750-DE
A2550	AX-RAO00132200-DE	A4550	AX-RAO00680900-DE
		A4750	AX-RAO00531100-DE
		A4900	AX-RAO00401490-DE
		A411K	AX-RAO00331760-DE

Note: This table corresponds with HD rating. When ND is used, please choose the reactor for the next size inverter.
(2) Accessories

Types	Appearance	Model	Description
Remote digital operator		3G3AX-OP05	5 Line LCD digital operator with copy function ${ }^{11}$
	\#8	3G3AX-OP05-H-E	Operator holder (for inside cabinet mounting)
		3G3AX-OP01	LED remote digital operator
		4X-KITmini	Mounting kit
LED digital operator		3G3AX-OP03	To be used in combination with communication option boards
Blind cover	48	3G3AX-OP05-B-E	
Cables		3G3AX-CAJOP300-EE	3 m remote digital operator cable
	-	$\frac{\text { USB-CONVERTERCABLE }}{\text { 3G3AX-PCACN2 }}$	RJ45 to USB connection cable

*1 This digital operator is provided with the RX inverter from factory.
(3) Option boards

Types	Model	Description	Functions
	3G3AX-PG	PG speed controller option card	Phase A, B and Z pulse (differential pulse) inputs (RS-422) Pulse train position command input (RS-422) Pulse monitor output (RS-422) PG frequency range: 100 kHz max
	3G3AX-RX-ECT	EtherCAT option card	Used for running or stopping the inverter, setting or referencing parameters, and monitoring output frequency, output current... through communications with the host controller.

(4) Braking unit, braking resistor unit

Inverter					Braking resistor unit						
Voltage	Max. motor kW	Inverter 3G3RX	Braking Unit AX-BCR	Connectable min. resistance Ω	Inverter mounted type (3\%ED, 10 sec max)		Braking torque \%	External resistor 10\%ED 10 sec max for built-in 5 sec max for Braking Unit		Braking torque \%	
		3-phase			Type AX-	Resist Ω		Type AX-	Resist Ω		
200 V (single-/ threephase)	0.55	2004	Built-in	50	REM00K1200-IE	200	180	REM00K1200-IE	200	180	
	1.1	2007					100	REM00K2070-IE	70	200	
	1.5	2015		35	REM00K2070-IE	70	140	REM00K4075-IE	75	130	
	2.2	2022					90	REM00K4035-IE	35	180	
	4.0	2037			REM00K4075-IE	75	50	REM00K6035-IE	35	100	
	5.5	2055		16	REM00K4035-IE	35	75	REM00K9020-IE	20	150	
	7.5	2075		10			55	REM01K9017-IE	17	110	
	11.0	2110			REM00K6035-IE	35	40	REM02K1017-IE	17	75	
	15.0	2150		7.5	REM00K9017-IE	17	55	REM03K5010-IE	10	95	
	18.5	2185			REM03K5010-IE	10	75	REM19K0008-IE	8	95	
	22.0	2220		5			65			80	
	30.0	2300	2035090-TE	4	$-$			REM19K0006-IE	6	80	
	37.0	2370						6	60		
	45.0	2450	2070130-TE	2.8				$2 \times$ REM19K0006-IE	3	105	
	55.0	2550						3	85		
400 V (threephase)	0.55	4004	Built-in	100	REM00K1400-IE	400	200		REM00K1400-IE	400	200
	1.1	4007					200	200			
	1.5	4015			REM00K1200-IE	200	190	REM00K2200-IE	200	190	
	2.2	4022			REM00K2200-IE	200	130	REM00K5120-IE	120	200	
	4.0	4040		70	REM00K2120-IE	120	120	REM00K6100-IE	100	140	
	5.5	4055			REM00K4075-IE	75	140	REM00K9070-IE	70	150	
	7.5	4075		35			100	REM01K9070-IE	70	110	
	11.0	4110			REM00K6100-IE	100	50	REM02K1070-IE	70	75	
	15.0	4150		24	REM00K9070-IE	70	55	REM03K5035-IE	35	110	
	18.5	4185			REM03K5035-IE	35	90	REM19K0030-IE	30	100	
	22.0	4220		20			75			85	
	30.0	4300	4015045-TE	16	- ${ }^{-}$			REM19K0020-IE	20	95	
	37.0	4370	4017068-TE	11				REM38K0012-IE	15	125	
	45.0	4450						100			
	55.0	4550	4035090-TE	8.5				$2 \times$ REM19K0020-IE	10	100	
	75.0	4750						$3 \times$ REM19K0030-IE	10	75	
	90.0	4900	4070130-TE	5.5				$2 \times$ REM38K0012-IE	6	105	
	110.0	411K	4090240-TE	3.2				$3 \times$ REM38K0012-IE	4	125	
	132.0	413K						105			

(5) Computer software

Types	Model	Description	Installation
	CX-Drive	Computer software	Configuration and monitoring software tool
	CX-One	Computer software	Configuration and monitoring software tool
	€Saver	Computer software	Software tool for Energy Saving calculation

[^11]
3G3MX2 \square

MX2 frequency inverter

Born to drive machines

- Current vector control
- High starting torque: 200% at 0.5 Hz
- Double rating VT 120\%/1 min and CT $150 \% / 1 \mathrm{~min}$
- IM \& PM motor control
- Torque control in open loop vector
- Positioning functionality
- Built-in application functionality (i.e. Brake control)
- Safety embedded compliant with ISO13849-1 (double input circuit and external device monitor EDM)
- USB port for PC programming
- 24 VDC backup supply for control board
- RoHS, CE, cULus

Ratings

- 200 V Class single-phase 0.1 to 2.2 kW
- 200 V Class three-phase 0.1 to 15.0 kW
- 400 V Class three-phase 0.4 to 15.0 kW

System configuration

Type designation

200 V class

Single-phase: 3G3MX2- \square			B001	B002	B004	B007*1	B015	B022	-	-	-	-	-
Three-phase: 3G3MX2- \square			2001	2002	2004	2007	2015	2022	2037	2055	2075	2110	2150
	For VT setting		0.2	0.4	0.55	1.1	2.2	3.0	5.5	7.5	11	15	18.5
	For CT setting		0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
	Inverter capacity kVA	200 VT	0.4	0.6	1.2	2.0	3.3	4.1	6.7	10.3	13.8	19.3	23.9
		200 CT	0.2	0.5	1.0	1.7	2.7	3.8	6.0	8.6	11.4	16.2	20.7
		240 VT	0.4	0.7	1.4	2.4	3.9	4.9	8.1	12.4	16.6	23.2	28.6
		240 CT	0.3	0.6	1.2	2.0	3.3	4.5	7.2	10.3	13.7	19.5	24.9
	Rated output current (A) at VT		1.2	1.9	3.5	6.0	9.6	12.0	19.6	30.0	40.0	56.0	69.0
	Rated output current (A) at CT		1.0	1.6	3.0	5.0	8.0	11.0	17.5	25.0	33.0	47.0	60.0
	Max. output voltage		Proportional to input voltage: 0 to 240 V										
	Max. output frequency		400 Hz										
$\begin{aligned} & \text { io } \\ & 30 \\ & 0.0 \\ & 00 \end{aligned}$	Rated input voltage and frequency		Single-phase 200 to 240 V $50 / 60 \mathrm{~Hz}$ 3-phase 200 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$										
	Allowable voltage fluctuation		-15% to $+10 \%$										
	Allowable frequency fluctuation		5\%										
Braking torque		At short-time deceleration At capacitor feedback	$\begin{gathered} 100 \%:<50 \mathrm{~Hz} \\ 50 \%:<60 \mathrm{~Hz} \end{gathered}$				$\begin{gathered} 70 \%: \\ <50 \mathrm{~Hz} \\ 50 \%: \\ <60 \mathrm{~Hz} \end{gathered}$	Approx 20\%			-		
Cooling method			Self cooling ${ }^{3}$				Forced-air-cooling						

*1 Three phase model use forced-air-cooling but single phase model is self cooling.
2 Based on a standard 3-Phase standard motor
*3 Forced air cooling for IP54 models.
400 V class

Three-phase: 3G3MX2-■			4004	4007	4015	4022	4030	4040	4055	4075	4110	4150
	For VT setting		0.75	1.5	2.2	3.0	4.0	5.5	7.5	11	15	18.5
	For CT setting		0.4	0.75	1.5	2.2	3.0	4.0	5.5	7.5	11	15
	Inverter capacity kVA	380 VT	1.3	2.6	3.5	4.5	5.7	7.3	11.5	15.1	20.4	25.0
		380 CT	1.1	2.2	3.1	3.6	4.7	6.0	9.7	11.8	15.7	20.4
		480 VT	1.7	3.4	4.4	5.7	7.3	9.2	14.5	19.1	25.7	31.5
		480 CT	1.4	2.8	3.9	4.5	5.9	7.6	12.3	14.9	19.9	25.7
	Rated output current (A) at VT		2.1	4.1	5.4	6.9	8.8	11.1	17.5	23.0	31.0	38.0
	Rated output current (A) at CT		1.8	3.4	4.8	5.5	7.2	9.2	14.8	18.0	24.0	31.0
	Max. output voltage		Proportional to input voltage: 0 to 480 V									
	Max. output frequency		400 Hz									
	Rated input voltage and frequency		3 -phase 380 to $480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$									
	Allowable voltage fluctuation		-15% to $+10 \%$									
	Allowable frequency fluctuation		5\%									
Brakin	g torque	At short-time deceleration *2 At capacitor feedback	$\begin{gathered} 100 \%:<50 \mathrm{~Hz} \\ 50 \%:<60 \mathrm{~Hz} \end{gathered}$				$\begin{aligned} & 70 \% \text { } \\ & \text { <50Hz } \\ & 50 \%: \\ & \text { } 260 \mathrm{~Hz} \end{aligned}$			-		
Cooling method			Self cooling*2		Forced-air-cooling							

[^12]
Common specifications

	Model number 3G3MX2	Specifications
	Control methods	Phase-to-phase sinusoidal pulse with modulation PWM (Sensorless vector control, V/F)
	Output frequency range	0.10 to 400.00 Hz
	Frequency precision	Digital set value: $\pm 0.01 \%$ of the max. frequency
	Frequency precision	Analogue set value: $\pm 0.2 \%$ of the max. frequency ($25 \pm 10^{\circ} \mathrm{C}$)
		Digital set value: 0.01 Hz
	Resolution of frequency set value	Analogue set value: 1/1000 of maximum frequency
	Resolution of output frequency	0.01Hz
	Starting torque	200\%/0.5 Hz
	Overload capability	Dual rating: Heavy duty (CT): 150% for 1 minute Normal Duty (VT): 120% for 1 minute
	Frequency set value	0 to 10 VDC ($10 \mathrm{~K} \Omega$), 4 to $20 \mathrm{~mA} \mathrm{(100} \Omega$), RS485 Modbus, Network options
	V/f Characteristics	Constant/ reduced torque, free V/f
	Inputs signals	FW (forward run command), RV (reverse run command), CF1~CF4 (multi-stage speed setting), JG (jog command), DB (external braking), SET (set second motor), 2CH (2-stage accel./decel. command), FRS (free run stop command), EXT (external trip), USP (startup function), CS (commercial power switchover), SFT (soft lock), AT (analog input selection), RS (reset), PTC (thermistor thermal protection), STA (start), STP (stop), F/R (forward/reverse), PID (PID disable), PIDC (PID reset), UP (remote control up function), DWN (remote control down function), UDC (remote control data clear), OPE (operator control), SF1~SF7 (multi-stage speed setting; bit operation), OLR (overload restriction), TL (torque limit enable), TRQ1 (torque limit changeover1), TRQ2 (torque limit changeover2), BOK (Braking confirmation), LAC (LAD cancellation), PCLR (position deviation clear), ADD (add frequency enable), F-TM (force terminal mode), ATR (permission of torque command input), KHC (Cumulative power clear), MI1~MI7 (general purpose inputs for Drive Programming), AHD (analog command hold), CP1~CP3 (multistage-position switches), ORL (limit signal of zero-return), ORC (trigger signal of zero-return), SPD (speed/position changeover), GS1~GS2 (STO inputs, safety related signals), 485 (Starting communication signal), PRG (executing Drive Programming), HLD (retain output frequency), ROK (permission of run command), EB (rotation direction detection of B-phase), DISP (display limitation), OP (option control signal), NO (no function), PSET (preset position)
	Output signals	RUN (run signal), FA1~FA5 (frequency arrival signal), OL,OL2 (overload advance notice signal), OD (PID deviation error signal), AL (alarm signal), OTQ (over/under torque threshold), UV (under-voltage), TRQ (torque limit signal), RNT (run time expired), ONT (power ON time expired), THM (thermal warning), BRK (brake release), BER (brake error), ZS (OHz detection), DSE (speed deviation excessive), POK (positioning completion), ODc (analog voltage input disconnection), OIDc (analog current input disconnection), FBV (PID second stage output), NDc (network disconnect detection), LOG1~LOG3 (Logic output signals), WAC (capacitor life warning), WAF (cooling fan warning), FR (starting contact), OHF (heat sink overheat warning), LOC (Low load), MO1~MO3 (general outputs for Drive Programming), IRDY (inverter ready), FWR (forward operation), RVR (reverse operation), MJA (major failure), WCO (window comparator O), WCOI (window comparator OI), FREF (frequency command source), REF (run command source), SETM (second motor in operation), EDM (STO (safe torque off) performance monitor), OP (option control signal), NO (no function)
	Standard functions	Free-V/f, manual/automatic torque boost, output voltage gain adjustment, AVR function, reduced voltage start, motor data selection, auto-tuning, motor stabilization control, reverse running protection, simple position control, simple torque control, torque limiting, automatic carrier frequency reduction, energy saving operation, PID function, non-stop operation at instantaneous power failure, brake control, DC injection braking, dynamic braking (BRD), frequency upper and lower limiters, jump frequencies, curve accel and decel (S, U, inversed $\mathrm{U}, \mathrm{EL}-\mathrm{S}$), 16-stage speed profile, fine adjustment of start frequency, accel and decel stop, process jogging, frequency calculation, frequency addition, 2-stage accel/decel, stop mode selection, start/end freq., analog input filter, window comparators, input terminal response time, output signal delay/hold function, rotation direction restriction, stop key selection, software lock, safe stop function, scaling function, display restriction, password function, user parameter, initialization, initial display selection, cooling fan control, warning, trip retry, frequency pull-in restart, frequency matching, overload restriction, over current restriction, DC bus voltage AVR
	Analogue inputs	2 analogue inputs 0 to $10 \mathrm{~V}(10 \mathrm{~K} \Omega)$, 4 to $20 \mathrm{~mA}(100 \Omega)$
	Pulse train input terminal	0 to 24 V , up to 32 kHz
	Accel/Decel times	0.01 to 3,600.0 s (line/curve selection), 2nd accel/decel setting available
	Display	Status indicator LED's Run, Program, Alarm, Power, Hz, Amps
	Display	Digital operator: Available to monitor 32 items: frequency reference, output current, output frequency...
	Motor overload protection	Electronic Thermal overload relay and PTC thermistor input
	Instantaneous overcurrent	200\% of rated current
	Overload	Dual rating: Heavy duty (CT): 150% for 1 minute Normal Duty (VT): 120% for 1 minute
	Overvoltage	800 V for 400 V type and 400 V for 200 V type
	Undervoltage	345 V for 400 V type and 172.5 V for 200 V type
	Momentary power loss	Following items are selectable: Alarm, decelerates to stop, decelerates to stop with DC bus controlled, restart
	Cooling fin overheat	Temperature monitor and error detection
	Stall prevention level	Stall prevention during acceleration/deceleration and constant speed
	Ground fault	Detection at power-on
	Power charge indication	On when power is supplied to the control part
	Degree of protection	IP20, Varnish coating on PCB \& IP54 (For 3G3MX2-D \square type)
	Ambient humidity	90\% RH or less (without condensation)
	Storage temperature	$-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (short-term temperature during transportation)
	Ambient temperature ${ }^{* 1}$	$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (Both the carrier frequency and output current need to be reduced over $40^{\circ} \mathrm{C}$)
	Installation	Indoor (no corrosive gas, dust, etc.)
	Installation height	Max. 1,000 m
	Vibration	$5.9 \mathrm{~m} / \mathrm{s}^{2}$ (0.6G), 10 to 55 Hz

${ }^{* 1}$ Some types of 3G3MX2-D requires special derating depending on installation conditions and carrier frequency selected. Check the manual for details.

Dimensions

Standard models (IP20)

Voltage class	Inverter model 3G3MX2-A	Figure	Dimensions in mm									
			W	W1	H	H1	t	D	D1	D2	d	Weight (kg)
Single-phase 200 V	B001-E	1	68	56	128	118	-	109	13.5	-	-	1.0
	B002-E											1.0
	B004-E							122.5	27			1.1
	B007-E	2	108	96	128	118		170.5	55	4.4	4.5	1.4
	B015-E											1.8
	B022-E											1.8
Three-phase 200 V	2001-E	1	68	56	128	118	-	109	13.5	-	-	1.0
	2002-E											1.0
	2004-E							122.5	27			1.1
	2007-E							145.5	50			1.2
	2015-E	2	108	96	128	118		170.5	55	4.4	4.5	1.6
	2022-E											1.8
	2037-E	3	140	128	128	118	5	170.5	55	4.4		2.0
	2055-E		140	122	260	248	6	155	73.3	6	6	3.0
	2075-E											3.4
	2110-E		180	160	296	284	7	175	97	5	7	5.1
	2150-E		220	192	350	336	7	175	84	5	7	7.4
$\begin{aligned} & \text { Three-phase } \\ & 400 \mathrm{~V} \end{aligned}$	4004-E	2	108	96	128	118	-	143.5	28	-	-	1.5
	4007-E							170.5	55			1.6
	4015-E							170.5				1.8
	4022-E											1.9
	4030-E											1.9
	4040-E	3	140	128	128	118	5	170.5	55	4.4	4.5	2.1
	4055-E			122	260	248	6	155	73.3	6	6	3.5
	4075-E											3.5
	4110-E		180	160	296	284	7	175	97	5	7	4.7
	4150-E											5.2

Option board

[^13]
Finless models

Voltage class	Inverter model 3G3MX2-A	Figure	Dimensions in mm						
			W	W1	H	H1	D	D1	Weight (kg)
Single-phase 200 V	B001-P-E	1	68	56	128	118	103	7.5	1.1
	B002-P-E								
	B004-P-E								
	B007-P-E	2	108	96	128	118	123	7.5	1.8
	B015-P-E								
	B022-P-E								
Three-phase 200 V	2001-P-E	1	68	56	128	118	103	7.5	1.1
	2002-P-E								
	2004-P-E								
	2007-P-E								
	2015-P-E	2	108	96	128	118	123	7.5	1.8
	2022-P-E								
	2037-P-E	3	140	128	128	118	123	7.5	2.1
$\begin{gathered} \text { Three-phase } \\ 400 \mathrm{~V} \end{gathered}$	4004-P-E	2	108	96	128	118	123	7.5	1.8
	4007-P-E								
	4015-P-E								
	4022-P-E								
	4030-P-E								
	4040-P-E	3	140	128	128	118	123	7.5	2.1

IP54 models

Figure 1	Figure 2	Figure 3	Figure 4
3G3MX2-DB001-E	3G3MX2-DB001-EC	3G3MX2-D2055-EC	3G3MX2-D2110-EC
3G3MX2-DB002-E	3G3MX2-DB002-EC	3G3MX2-D2075-EC	3G3MX2-D2150-EC
3G3MX2-DB004-E	3G3MX2-DB004-EC	3G3MX2-D4055-EC	3G3MX2-D4110-EC
3G3MX2-D2001-E	3G3MX2-DB007-EC	3G3MX2-D4075-EC	3G3MX2-D4150-EC
3G3MX2-D2002-E	3G3MX2-DB015-EC		
3G3MX2-D2004-E	3G3MX2-DB022-EC		
3G3MX2-D2007-E	3G3MX2-D2001-EC		
	3G3MX2-D2002-EC		
	3G3MX2-D2004-EC		
	3G3MX2-D2007-EC		
	3G3MX2-D2015-EC		
	3G3MX2-D2022-EC		
	3G3MX2-D2037-EC		
	3G3MX2-D4004-EC		
	3G3MX2-D4007-EC		
	3G3MX2-D4015-EC		
	3G3MX2-D4022-EC		
	3G3MX2-D4030-EC		
	3G3MX2-D4040-EC		

Rasmi footprint filters

Rasmi model		Dimensions					
		W	H	L	X	Y	M
$1 \times 200 \mathrm{~V}$	AX-FIM1010-RE \square	71	45	169	156	51	M4
	AX-FIM1014-RE \square	111	50	169	156	91	M4
	AX-FIM1024-RE \square	111	50	169	156	91	M4
$3 \times 200 \mathrm{~V}$	AX-FIM2010-RE \square	82	50	194	181	62	M4
	AX-FIM2020-RE \square	111	50	169	156	91	M4
	AX-FIM2030-RE \square	144	50	174	161	120	M4
	AX-FIM2060-RE \square	150	52	320	290	122	M5
	AX-FIM2080-RE \square	188	62	362	330	160	M5
	AX-FIM2100-RE \square	220	62	415	380	192	M6
$3 \times 400 \mathrm{~V}$	AX-FIM3005-RE \square	114	46	169	156	96	M4
	AX-FIM3010-RE \square	114	46	169	156	96	M4
	AX-FIM3014-RE \square	144	50	174	161	120	M4
	AX-FIM3030-RE \square	150	52	306	290	122	M5
	AX-FIM3050-RE \square	182	62	357	330	160	M5

Schaffner footprint filters

Schaffner model		Dimensions							
		W	H	L	X	Y	A	B	M
$1 \times 200 \mathrm{~V}$	AX-FIM1010-SE \square	70	40	166	156	51	150	50	M5
	AX-FIM1014-SE \square	110	45	166	156	91	150	80	M5
	AX-FIM1024-SE \square	110	50	166	156	91	150	80	M5
$3 \times 200 \mathrm{~V}$	AX-FIM2010-SE \square	80	40	191	181	62	150	50	M5
	AX-FIM2020-SE \square	110	50	166	156	91	150	80	M5
	AX-FIM2030-SE \square	142	50	171	161	120	150	112	M5
	AX-FIM2060-SE \square	140	55	304	290	122	286	112	M5
	AX-FIM2080-SE \square	180	55	344	330	160	323	140	M5
	AX-FIM2100-SE \square	220	65	394	380	192	376	180	M5
$3 \times 400 \mathrm{~V}$	AX-FIM3005-SE \square	110	50	166	156	91	150	80	M5
	AX-FIM3010-SE \square	110	50	166	156	91	150	80	M5
	AX-FIM3014-SE \square	142	50	171	161	120	150	112	M5
	AX-FIM3030-SE \square	140	55	304	290	122	286	112	M5
	AX-FIM3050-SE \square	180	55	344	330	160	323	140	M5

Input AC reactor

Single-phase

Voltage	Reference	Dimensions								Weight kg
		A	B	C	D	E	F	G	H	
200 V	AX-RAI02000070-DE	84	113	96	101	66	5	7.5	2	1.22
	AX-RAI01700140-DE	84	113	116	101	66	5	7.5	2	1.95
	AX-RAI01200200-DE	84	113	131	101	66	5	7.5	2	2.55
	AX-RAI00630240-DE	84	113	116	101	66	5	7.5	2	1.95

Three-phase

Voltage	Reference	Dimensions						Weight kg
		A	B2	C2	D	E	F	
200 V	AX-RAI02800080-DE	120	70	120	80	52	5.5	1.78
	AX-RAI00880200-DE	120	80	120	80	62	5.5	2.35
	AX-RAI00350335-DE	180	85	190	140	55	6	5.5
	AX-RAI00180670-DE	180	85	190	140	55	6	5.5
400 V	AX-RAI07700050-DE	120	70	120	80	52	5.5	1.78
	AX-RAI03500100-DE	120	80	120	80	62	5.5	2.35
	AX-RAI01300170-DE	120	80	120	80	62	5.5	2.50
	AX-RAI00740335-DE	180	85	190	140	55	6	5.5

DC reactor

Voltage	Reference	Dimensions								Weight kg
		A	B	C	D	E	F	G	H	
200 V	AX-RC21400016-DE	84	113	96	101	66	5	7.5	2	1.22
	AX-RC10700032-DE									
	AX-RC06750061-DE			105						1.60
	AX-RC03510093-DE									
	AX-RC02510138-DE			116						1.95
	AX-RC01600223-DE	108	135	124	120	82	6.5	9.5	9.5	3.20
	AX-RC01110309-DE	120	152	136	135	94	7		-	5.20
	AX-RC00840437-DE			146						6.00
	AX-RC00590614-DE	150	177	160	160	115		2		11.4
	AX-RC00440859-DE			182.6						14.3
400 V	AX-RC43000020-DE	84	113	96	101	66	5	7.5	2	1.22
	AX-RC27000030-DE			105						1.60
	AX-RC14000047-DE									
	AX-RC10100069-DE			116						1.95
	AX-RC08250093-DE			131						2.65
	AX-RC06400116-DE	108	135	133	120	82	6.5	9.5	9.5	3.70
	AX-RC04410167-DE	120	152	136	135	94	7		-	5.20
	AX-RC03350219-DE			146						6.00
	AX-RC02330307-DE	150	177	160	160	115	7	2		11.4
	AX-RC01750430-DE			182.6						14.3

Output AC reactor

Voltage	Reference	Dimensions						Weight kg
		A	B2	C2	D	E	F	
200 V	AX-RAO11500026-DE	120	70	120	80	52	5.5	1.78
	AX-RAO07600042-DE	120	70	120	80	52	5.5	1.78
	AX-RAO04100075-DE	120	80	120	80	62	5.5	2.35
	AX-RAO03000105-DE	120	80	120	80	62	5.5	2.35
	AX-RAO01830180-DE	180	85	190	140	55	6	5.5
	AX-RAO01150220-DE	180	85	190	140	55	6	5.5
	AX-RAO00950320-DE	180	85	205	140	55	6	6.5
	AX-RAO00630430-DE	180	95	205	140	65	6	9.1
	AX-RAO00490640-DE	180	95	205	140	65	6	9.1
400 V	AX-RAO16300038-DE	120	70	120	80	52	5.5	1.78
	AX-RAO11800053-DE	120	80	120	80	52	5.5	2.35
	AX-RAO07300080-DE	120	80	120	80	62	5.5	2.35
	AX-RAO04600110-DE	180	85	190	140	55	6	5.5
	AX-RAO03600160-DE	180	85	205	140	55	6	6.5
	AX-RAO02500220-DE	180	95	205	140	55	6	9.1
	AX-RAO02000320-DE	180	105	205	140	85	6	11.7

Chokes

Reference	$\underset{\text { diameter }}{\mathrm{D}}$	Motor kW	Dimensions						Weight kg
			L	W	H	X	Y	m	
AX-FER2102-RE	21	<2.2	85	22	46	70	-	5	0.1
AX-FER2515-RE	25	< 15	105	25	62	90	-	5	0.2
AX-FER5045-RE	50	< 45	150	50	110	125	30	5	0.7

Resistor dimensions

Fig 1

Fig 2

Fig 4

Type	Fig.	Dimensions							Weight
		L	H	M	1	T	G	N	kg
AX-REM00K1400-IE	1	105	27	36	94	-	-	-	0.2
AX-REM00K2070-IE									
AX-REM00K2120-IE									
AX-REM00K2200-IE									
AX-REM00K4075-IE		200	27	36	189	-	-	-	0.425
AX-REM00K4035-IE									
AX-REM00K4030-IE									
AX-REM00K5120-IE		260	27	36	249	-	-	-	0.58
AX-REM00K6100-IE		320	27	36	309	-	-	-	0.73
AX-REM00K6035-IE									
AX-REM00K9070-IE	2	200	61	100	74	211	40	230	1.41
AX-REM00K9020-IE									
AX-REM00K9017-IE									
AX-REM01K9070-IE	3	365	73	105	350	70	-	-	4
AX-REM01K9017-IE									
AX-REM02K1070-IE	4	310	100	240	295	210	-	-	7
AX-REM02K1017-IE									
AX-REM03K5035-IE		365	100	240	350	210	-	-	8
AX-REM03K5010-IE									

Standard connections

Terminal block specifications

Terminal	Name	Function (signal level)
R/L1, S/L2, T/L3	Main circuit power supply input	Used to connect line power to the drive. Drives with single-phase 200 V input power use only terminals R/L1 and N (T/L3), terminal S/L2 is not available for these units
U/T1, V/T2, W/T3	Inverter output	Used to connect the motor
PD/+1, P/+	External DC reactor terminal	Normally connected by the short-circuit bar. Remove the short-circuit bar between +1 and P/+2 when a DC reactor is connected.
$\mathbf{P / + , ~ N / - ~}$	Regenerative braking unit terminal	Connect optional regenerative braking units (If a braking torque is required)
$\mathbf{P / + , ~ R B ~}$	Braking resistor terminals	Connect option braking resistor (if a braking torque is required)
\oplus	Grounding	For grounding (Grounding should conform to the local grounding code.)

Control circuit

Type	No.	Signal name	Function	Signal level
	PLC	Intelligent input common	Source type: connecting [P24] to [1]-[7] turns inputs ON Sink type: connecting [L] to [1]-[7] turns inputs ON	-
	P24	Internal 24 VDC	$24 \mathrm{VDC}, 30 \mathrm{~mA}$	$24 \mathrm{VDC}, 100 \mathrm{~mA}$
	1	Multi-function Input selection 1	Factory setting: Forward/Stop	27 VDC max
	2	Multi-function Input selection 2	Factory setting: Reverse/Stop	
	3/GS1	Multi-function Input selection 3/safe stop input 1	Factory setting: External trip	
	4/GS2	Multi-function Input selection 4/safe stop input 2	Factory setting: Reset	
	5/PTC	Multi-function Input selection 5/PTC thermistor input	Factory setting: Multi-step speed reference 1	
	6	Multi-function input selection 6	Factory setting: Multi-step speed reference 2	
	7/EB	Multi-function input selection 7/Pulse train input B	Factory setting: Jog	
	L	Multi-function Input selection common (in upper row)	-	-
$\frac{\mathscr{N}}{\frac{0}{2}}$	EA	Pulse train input A	Factory setting: Speed reference	32 kHz max 5 to 24 VDC
	EO	Pulse train output	LAD frequency	10 VDC 2 mA 32 kHz max
	H	Frequency reference power supply	10 VDC 10 mA max	
	0	Voltage frequency reference signal	0 to $10 \mathrm{VDC}(10 \mathrm{k} \Omega)$	
	OI	Current frequency reference signal	4 to $20 \mathrm{~mA}(250 \Omega)$	
	L	Frequency reference common (bottom row)	-	-
	11/EDM	Discrete logic output 1/EDM output	Factory setting: During Run	27 VDC, 50 mA max EDM based on ISO13849-1
	12	Discrete logic output 2	Factory setting: Frequency arrival type 1	
	CM2	GND logic output	-	
	ALO	Relay commom contact	Factory setting: Alarm signal Under normal operation AL1 - ALO Closed AL2 - ALO Open	R load 250 VAC 2.5 A 30 VDC 3.0 A I load 250 VAC 0.2 A 30 VDC 0.7 A
	AL1	Relay contact, normally open		
	AL2	Relay contact, normally closed		
	AM	Analog voltage output	Factory setting: LAD frequency	0 to 10 VDC 1 mA
¢	SP	Serial communication terminal	RS485 Modbus communication	

Side by side mounting

Inverter heat loss

Single-phase 200 V class

Model 3G3MX2		AB001	AB002	AB004	AB007	AB015	AB022
Inverter capacity kVA	200V VT	0.4	0.6	1.2	2.0	3.3	4.1
	200V CT	0.2	0.5	1.0	1.7	2.7	3.8
	240V VT	0.4	0.7	1.4	2.4	3.9	4.9
	240 V CT	0.3	0.6	1.2	2.0	3.3	4.5
Rated current (A) VT		1.2	1.9	3.4	6.0	9.6	12.0
Rated current (A) CT		1.0	1.6	3.0	5.0	8.0	11.0
Total heat loss		12	22	30	48	79	104
Efficiency at rated load		89.5	90	93	94	95	95.5
Cooling method		Self cooling				Forced-air-cooling	

Three-phase 200 V class

	Model 3G3MX2	A2001	A2002	A2004	A2007	A2015	A2022	A2037	A2055	A2075	A2110	A2150
Inverter capacity kVA	200 VT	0.4	0.6	1.2	2.0	3.3	4.1	6.7	10.3	13.8	19.3	23.9
	200 CT	0.2	0.5	1.0	1.7	2.7	3.8	6.0	8.6	11.4	16.2	20.7
	240 VT	0.4	0.7	1.4	2.4	3.9	4.9	8.1	12.4	16.6	23.2	28.6
	240 CT	0.3	0.6	1.2	2.0	3.3	4.5	7.2	10.3	13.7	19.5	24.9
Rated current (A) VT		1.2	1.9	3.4	6.0	9.6	12.0	19.6	30.0	40.0	56.0	69.0
Rated current (A) CT		1.0	1.6	3.0	5.0	8.0	11.0	17.5	25.0	33.0	47.0	60.0
Total hea		12	22	30	48	79	104	154	229	313	458	625
Efficiency at rated load		89.5	90	93	94	95	95.5	96	96	96	96	96
Cooling method		Self cooling			Forced-air-cooling							

Three-phase 400 V class

Model 3G3MX2		A4004	A4007	A4015	A4022	A4030	A4040	A4055	A4075	A4110	A4150
Inverter capacity kVA	380V VT	1.3	2.6	3.5	4.5	5.7	7.3	11.5	15.1	20.4	25.0
	380 V CT	1.1	2.2	3.1	3.6	4.7	6.0	9.7	11.8	15.7	20.4
	480 V VT	1.7	3.4	4.4	5.7	7.3	9.2	14.5	19.1	25.7	31.5
	480 V CT	1.4	2.8	3.9	4.5	5.9	7.6	12.3	14.9	19.9	25.7
Rated current (A) VT		2.1	4.1	5.4	6.9	8.8	11.1	17.5	23.0	31.0	38.0
Rated current (A) CT		1.8	3.4	4.8	5.5	7.2	9.2	14.8	18.0	24.0	31.0
Total heat loss		35	56	96	116	125	167	229	296	411	528
Efficiency at rated load		92	93	94	95	96	96	96	96.2	96.4	96.6
Cooling method		Self cooling		Forced-air-cooling							

Input AC reactor
Power supply

1-phase 200 V class				3-phase 200 V class				400 V class			
Max. applicable motor output kW	Reference	Current value A	Inductance mH	Max. applicable motor output kW	Reference	Current value A	Inductance mH	Max. ap- plicable motor output kW	Reference	Current value A	Inductance mH
0.4	AX-RAIO2000070-DE	7.0	2.0	1.5	AX-RAIO2800080-DE	8.0	2.8	1.5	AX-RAI07700050-DE	5.0	7.7
0.75	AX-RAI01700140-DE	14.0	1.7	3.7	AX-RAI00880200-DE	20.0	0.88	4.0	AX-RAI03500100-DE	10.0	3.5
1.5	AX-RAI01200200-DE	20.0	1.2	7.5	AX-RAI00350335-DE	33.5	0.35	7.5	AX-RAI01300170-DE	17.0	1.3
2.2	AX-RAI00630240-DE	24.0	0.63	15	AX-RAI00180670-DE	67.0	0.18	15	AX-RAI00740335-DE	33.5	0.74

DC reactor

200 V class				400 V class			
Max. applicable motor output kW	Reference	$\underset{A}{\text { Current value }}$	$\begin{gathered} \text { Inductance } \\ \mathrm{mH} \end{gathered}$	Max. applicable motor output kW	Reference	$\underset{A}{\text { Current value }}$	$\begin{aligned} & \text { Inductance } \\ & \mathrm{mH} \end{aligned}$
0.2	AX-RC21400016-DE	1.6	21.4	0.4	AX-RC43000020-DE	2.0	43.0
0.4	AX-RC10700032-DE	3.2	10.7	0.7	AX-RC27000030-DE	3.0	27.0
0.7	AX-RC06750061-DE	6.1	6.75	1.5	AX-RC14000047-DE	4.7	14.0
1.5	AX-RC03510093-DE	9.3	3.51	2.2	AX-RC10100069-DE	6.9	10.1
2.2	AX-RC02510138-DE	13.8	2.51	3.0	AX-RC08250093-DE	9.3	8.25
3.7	AX-RC01600223-DE	22.3	1.60	4.0	AX-RC06400116-DE	11.6	6.40
5.5	AX-RC01110309-DE	30.9	1.11	5.5	AX-RC04410167-DE	16.7	4.41
7.5	AX-RC00840437-DE	43.7	0.84	7.5	AX-RC03350219-DE	21.9	3.35
11.0	AX-RC00590614-DE	61.4	0.59	11.0	AX-RC02330307-DE	30.7	2.33
15.0	AX-RC00440859-DE	85.9	0.44	15.0	AX-RC01750430-DE	43.0	1.75

Output AC reactor

200 V class				400 V class			
Max. applicable motor output kW	Reference	Current value	$\underset{\mathrm{mH}}{\substack{\text { Inductance }}}$	Max. applicable motor output kW	Reference	$\underset{A}{\text { Current value }}$	$\begin{gathered} \text { Inductance } \\ \mathrm{mH} \end{gathered}$
0.4	AX-RAO11500026-DE	2.6	11.50	1.5	AX-RAO16300038-DE	3.8	16.30
0.75	AX-RAO07600042-DE	4.2	7.60				
1.5	AX-RAO04100075-DE	7.5	4.10				
2.2	AX-RAO03000105-DE	10.5	3.00	2.2	AX-RAO11800053-DE	5.3	11.80
3.7	AX-RAO01830160-DE	16.0	1.83	4.0	AX-RAO07300080-DE	8.0	7.30
5.5	AX-RAO01150220-DE	22.0	1.15	5.5	AX-RAO04600110-DE	11.0	4.60
7.5	AX-RAO00950320-DE	32.0	0.95	7.5	AX-RAO03600160-DE	16.0	3.60
11	AX-RAO00630430-DE	43.0	0.63	11	AX-RAO02500220-DE	22.0	2.50
15	AX-RAO00490640-DE	64.0	0.49	15	AX-RAO02000320-DE	32.0	2.00

Ordering information

3G3MX2

Specifications					Model		
Voltage class	Constant torque		Variable torque		Standard (IP20)	Finless	IP54
	Max motor kW	Rated current A	Max motor kW	Rated current A			
Single-phase 200 V	0.1	1.0	0.2	1.2	3G3MX2-AB001-E	3G3MX2-AB001-P-E	3G3MX2-DB001-E/EC
	0.2	1.6	0.4	1.9	3G3MX2-AB002-E	3G3MX2-AB002-P-E	3G3MX2-DB002-E/EC
	0.4	3.0	0.55	3.5	3G3MX2-AB004-E	3G3MX2-AB004-P-E	3G3MX2-DB004-E/EC
	0.75	5.0	1.1	6.0	3G3MX2-AB007-E	3G3MX2-AB007-P-E	3G3MX2-DB007-EC
	1.5	8.0	2.2	9.6	3G3MX2-AB015-E	3G3MX2-AB015-P-E	3G3MX2-DB015-EC
	2.2	11.0	3.0	12.0	3G3MX2-AB022-E	3G3MX2-AB022-P-E	3G3MX2-DB022-EC
Three-phase 200 V	0.1	1.0	0.2	1.2	3G3MX2-A2001-E	3G3MX2-A2001-P-E	3G3MX2-D2001-E/EC
	0.2	1.6	0.4	1.9	3G3MX2-A2002-E	3G3MX2-A2002-P-E	3G3MX2-D2002-E/EC
	0.4	3.0	0.55	3.5	3G3MX2-A2004-E	3G3MX2-A2004-P-E	3G3MX2-D2004-E/EC
	0.75	5.0	1.1	6.0	3G3MX2-A2007-E	3G3MX2-A2007-P-E	3G3MX2-D2007-E/EC
	1.5	8.0	2.2	9.6	3G3MX2-A2015-E	3G3MX2-A2015-P-E	3G3MX2-D2015-EC
	2.2	11.0	3.0	12.0	3G3MX2-A2022-E	3G3MX2-A2022-P-E	3G3MX2-D2022-EC
	3.7	17.5	5.5	19.6	3G3MX2-A2037-E	3G3MX2-A2037-P-E	3G3MX2-D2037-EC
	5.5	25.0	7.5	30.0	3G3MX2-A2055-E	-	3G3MX2-D2055-EC
	7.5	33.0	11	40.0	3G3MX2-A2075-E	-	3G3MX2-D2075-EC
	11	47.0	15	56.0	3G3MX2-A2110-E	-	3G3MX2-D2110-EC
	15	60.0	18.5	69.0	3G3MX2-A2150-E	-	3G3MX2-D2150-EC
Three-phase 400 V	0.4	1.8	0.75	2.1	3G3MX2-A4004-E	3G3MX2-A4004-P-E	3G3MX2-D4004-EC
	0.75	3.4	1.5	4.1	3G3MX2-A4007-E	3G3MX2-A4007-P-E	3G3MX2-D4007-EC
	1.5	4.8	2.2	5.4	3G3MX2-A4015-E	3G3MX2-A4015-P-E	3G3MX2-D4015-EC
	2.2	5.5	3.0	6.9	3G3MX2-A4022-E	3G3MX2-A4022-P-E	3G3MX2-D4022-EC
	3.0	7.2	4.0	8.8	3G3MX2-A4030-E	3G3MX2-A4030-P-E	3G3MX2-D4030-EC
	4.0	9.2	5.5	11.1	3G3MX2-A4040-E	3G3MX2-A4040-P-E	3G3MX2-D4040-EC
	5.5	14.8	7.5	17.5	3G3MX2-A4055-E	-	3G3MX2-D4055-EC
	7.5	18.0	11	23.0	3G3MX2-A4075-E	-	3G3MX2-D4075-EC
	11	24.0	15	31.0	3G3MX2-A4110-E	-	3G3MX2-D4110-EC
	15	31.0	18.5	38.0	3G3MX2-A4150-E	-	3G3MX2-D4150-EC

(1) Line filters

Inverter		Standard line filter				Low leakage line filter			
		Rasmi		Schaffner		Rasmi		Schaffner	
Voltage	Model 3G3MX2- \square	Reference AX-FIM	Current (A)	$\begin{gathered} \text { Reference } \\ \text { AX-FIM } \end{gathered}$	Current (A)	$\begin{gathered} \text { Reference } \\ \text { AX-FIM } \end{gathered}$	Current (A)	Reference AX-FIM	Current (A)
1Phase 200 VAC	$\begin{gathered} \hline \text { AB001 / AB002 / } \\ \text { AB004 } \end{gathered}$	1010-RE	10	1010-SE-V1	8	1010-RE-LL	10	1010-SE-LL	10
	AB007	1014-RE	14	1014-SE-V1	14	1014-RE-LL	14	1014-SE-LL	14
	AB015 / AB022	1024-RE	24	1024-SE-V1	27	1024-RE-LL	24	1024-SE-LL	24
3Phase200 VAC	$\begin{aligned} & \text { A2001 / A2002 / } \\ & \text { A2004 / A2007 } \end{aligned}$	2010-RE	10	2010-SE-V1	7.8	2010-RE-LL	10	-	-
	A2015 / A2022	2020-RE	20	2020-SE-V1	16	2020-RE-LL	20	2020-SE-LL	20
	A2037	2030-RE	30	2030-SE-V1	25	2030-RE-LL	30	2030-SE-LL	30
	A2055 / A2075	2060-RE	60	2060-SE-V1	50	2060-RE-LL	60	2060-SE-LL	50
	A2110	2080-RE	80	2080-SE-V1	70	2080-RE-LL	80	-	-
	A2150	2100-RE	100	2100-SE-V1	75	2100-RE-LL	100	-	-
3Phase 400 VAC	A4004 / A4007	3005-RE	5	3005-SE-V1	6	3005-RE-LL	5	3005-SE-LL	5
	$\begin{gathered} \text { A4015 / A4022 / } \\ \text { A4030 } \\ \hline \end{gathered}$	3010-RE	10	3010-SE-V1	12	3010-RE-LL	10	3010-SE-LL	10
	A4040	3014-RE	14	3014-SE-V1	15	3014-RE-LL	14	3014-SE-LL	15
	A4055 / A4075	3030-RE	30	3030-SE-V1	29	3030-RE-LL	30	3030-SE-LL	30
	A4110 / A4150	3050-RE	50	3050-SE-V1	48	3050-RE-LL	50	3050-SE-LL	50

(1) Input AC reactors

Inverter		AC Reactor
Voltage	Model 3G3MX2- \square	Reference
1-Phase 200 VAC	AB002 / AB004	AX-RAI02000070-DE
	AB007	AX-RAI01700140-DE
	AB015	AX-RAI01200200-DE
	AB022	AX-RAI00630240-DE
3-Phase 200 VAC	A2002 / A2004 / A2007	AX-RAI02800080-DE
	A2015 / A2022 / A2037	AX-RAI00880200-DE
	A2055 / A2075	AX-RAI00350335-DE
	A2110 / A2150	AX-RAI00180670-DE
3-Phase 400 VAC	A4004 / A4007 / A4015	AX-RAI07700050-DE
	A4022 / A4030 / A4040	AX-RAI03500100-DE
	A4055 / A4075	AX-RAI01300170-DE
	A4110 / A4150	AX-RAI00740335-DE

(1) DC reactors

200V 1-phase		200V 3-phase		400V 3-phase	
Inverter	DC Reactor	Inverter	DC Reactor	Inverter	DC Reactor
3G3MX2-AB001	AX-RC10700032-DE	3G3MX2-A2001	AX-RC21400016-DE	3G3MX2-A4004	AX-RC43000020-DE
3G3MX2-AB002		3G3MX2-A2002		3G3MX2-A4007	AX-RC27000030-DE
3G3MX2-AB004	AX-RC06750061-DE	3G3MX2-A2004	AX-RC10700032-DE	3G3MX2-A4015	AX-RC14000047-DE
3G3MX2-AB007	AX-RC03510093-DE	3G3MX2-A2007	AX-RC06750061-DE	3G3MX2-A4022	AX-RC10100069-DE
3G3MX2-AB015	AX-RC02510138-DE	3G3MX2-A2015	AX-RC03510093-DE	3G3MX2-A4030	AX-RC08250093-DE
3G3MX2-AB022	AX-RC01600223-DE	3G3MX2-A2022	AX-RC02510138-DE	3G3MX2-A4040	AX-RC06400116-DE
-		3G3MX2-A2037	AX-RC01600223-DE	3G3MX2-A4055	AX-RC04410167-DE
		3G3MX2-A2055	AX-RC01110309-DE	3G3MX2-A4075	AX-RC03350219-DE
		3G3MX2-A2075	AX-RC00840437-DE	3G3MX2-A4110	AX-RC02330307-DE
		3G3MX2-A2110	AX-RC00590614-DE	3G3MX2-A4150	AX-RC01750430-DE
		3G3MX2-A2150	AX-RC00440859-DE		

(1) Chokes

Model	Diameter	Description
AX-FER2102-RE	21	For 2.2 KW motors or below
AX-FER2515-RE	25	For 15 KW motors or below
AX-FER5045-RE	50	For 45 KW motors or below

(1) Output AC reactor

Inverter		AC Reactor
Voltage	Model 3G3MX2- \square	Reference
200 VAC	AB001 / AB002 / AB004 A2001 / A2002 / A2004	AX-RAO11500026-DE
	AB007 / A2007	AX-RAO07600042-DE
	AB015 / A2015	AX-RAO04100075-DE
	AB022 / A2022	AX-RAO03000105-DE
	A2037	AX-RAO01830160-DE
	A2055	AX-RAO01150220-DE
	A2075	AX-RAO00950320-DE
	A2110	AX-RAO00630430-DE
	A2150	AX-RAO00490640-DE
400 VAC	A4004 / A4007 / A4015	AX-RAO16300038-DE
	A4022	AX-RAO11800053-DE
	A4030 / A4040	AX-RAO07300080-DE
	A4055	AX-RAO04600110-DE
	A4075	AX-RAO03600160-DE
	A4110	AX-RAO02500220-DE
	A4150	AX-RAO02000320-DE

(2) Accessories

Types	Model	Description	Functions
	AX-OP05-E	LCD remote operator	5 Line LCD remote operator with copy function, cable length max. 3m.
	3G3AX-CAJOP300-EE	Remote operator cable	3 meters cable for connecting remote operator
	3G3AX-OP01	LED remote operator	LED remote operator, cable length max. 3m
	4X-KITMINI	Mounting kit for LED operator	Mounting kit for LED operator on panel
	3G3AX-OP05-H-E	Operator holder	Holder to put the AX-OP05-E inside of the cabinet
o .0 O 0 0 0 0	AX-CUSBM002-E	PC configuration cable	Mini USB to USB connector cable

(3) Communication option boards

Model	Description	Functions
3G3AX-MX2-ECT	EtherCAT option card	Used for running or stopping the inverter, setting or referencing parameters, and monitoring output frequency, output current, or similar items through communications with the host con- troller.

(4) Braking unit, braking resistor unit

Inverter					Braking resistor unit					
Voltage	Max. motor kW	Inverter 3G3MX2 \square		Connectable min. resistance Ω	Inverter mounted type$\text { (3\% ED, } 10 \mathrm{sec} \max)$		Braking torque \%	Inverter mounted type (10\% ED, 10 sec max)		Braking torque \%
		1-phase	3-phase		Type AX-	Resist Ω		Type AX-	Resist Ω	
$200 \mathrm{~V}$ (Single-/ Threephase)	0.12	B001	2001	100	REM00K1400-IE	400	200	REM00K1400-IE	400	200
	0.25	B002	2002				180			180
	0.55	B004	2004		REM00K1200-IE	200	180	REM00K1200-IE	200	180
	1.1	B007	2007	50			100	REM00K2070-IE	70	200
	1.5	B015	2015		REM00K2070-IE	70	140	REM00K4075-IE	75	130
	2.2	B022	2022	35			90	REM00K4035-IE	35	180
	4.0	-	2040		REM00K4075-IE	75	50	REM00K6035-IE	35	100
	5.5	-	2055	20	REM00K4035-IE	35	75	REM00K9020-IE	20	150
	7.5	-	2075	17			55	REM01K9017-IE	17	110
	11	-	2110		REM00K6035-IE	35	40	REM02K1017-IE	17	75
	15	-	2150	10	REM00K9017-IE	17	55	REM03K5010-IE	10	95
400 V (Threephase)	0.55	-	4004	180	REM00K1400-IE	400	200	REM00K1400-IE	400	200
	1.1	-	4007				200			200
	1.5	-	4015		REM00K1200-IE	200	190	REM00K2200-IE	200	190
	2.2	-	4022	100	REM00K2200-IE	200	130	REM00K5120-IE	120	200
	3.0	-	4030			120	160			160
	4.0	-	4040				120	REM00K6100-IE	100	140
	5.5	-	4055	70	REM00K4075-IE	75	140	REM00K9070-IE	70	150
	7.5	-	4075				100	REM01K9070-IE	70	110
	11	-	4110		REM00K6100-IE	100	50	REM02K1070-IE	70	75
	15	-	4150	35	REM00K9070-IE	70	55	REM03K5035-IE	35	110

(5) Computer software

Types	Model	Description	Specification
	CX-Drive	Computer software	Configuration and monitoring software tool
	CX-One	Computer software	Configuration and monitoring software tool
	€Saver	Computer software	Software tool for Energy Saving calculation

[^14]Cat. No. SysCat_I113E-EN-05 In the interest of product improvement, specifications are subject to change without notice.

FH series

Vision system

Flexible solution for machine vision

The FH vision systems are specifically intended for seamless integration with PLC's, motion controllers and robotic control systems increasing the overall machine performance.

- Powerful 4-core i7 parallel processor
- Fast EtherCAT communications
- The new Shape Search III processing item enables fast, precise and stable measurements
- 24 types of camera with up to 12 Mpixel
- Over 100 processing items including 1D code, 2D code and OCR
- Easy integration into an machine monitor with .NET user interface controls

System configuration

Specifications
FH sensor controller specifications

Type				High-speed controllers (4 core)			Standard controllers (2 core)		
Model			NPN	FH-3050	FH-3050-10	FH-3050-20	FH-1050	FH-1050-10	FH-1050-20
			PNP						
Main functions	Controller type			Box-type controllers					
	High-grade processing items			No					
	No. of cameras			2 l					
	Processing resolution	Connected to a 300,000-pixel camera		$640(\mathrm{H}) \times 480(\mathrm{~V})$					
		Connected to a 2 million-pixel camera		2040 (H) x 1088 (V)					
		Connected to a 4 million-pixel camera		2040 (H) x 2048 (V)					
		Connected to a 12 million-pixel camera		4084 (H) x 3072 (V)					
	No. of scenes			128					
	Number of logged images ${ }^{* 1}$	Connected to a intelligent compact camera		Connected to 1 camera (color): 232, Connected to 2 camera (color): 116 Connected to 3 camera (color): 77, Connected to 4 camera (color): 58 Connected to 5 camera (color): 46, Connected to 6 camera (color): 38 Connected to 7 camera (color): 33 , Connected to 8 camera (color): 29					
		Connected to a 300,000-pixel camera		Connected to 1 camera (color): 270, Connected to 1 camera (monochrome): 272 Connected to 2 camera (color): 135, Connected to 2 camera (monochrome): 136 Connected to 3 camera (color/monochrome): 90 Connected to 4 camera (color): 67, Connected to 4 camera (monochrome): 68 Connected to 5 camera (color/monochrome): 54 Connected to 6 camera (color/monochrome): 45 Connected to 7 camera (color/monochrome): 38 Connected to 8 camera (color): 33, Connected to 8 camera (monochrome): 34					
		Connected to a 2 million-pixel camera		Connected to 1 camera (color/monochrome): 37, Connected to 2 camera (color/monochrome): 18 Connected to 3 camera (color/monochrome): 12, Connected to 4 camera (color/monochrome): 9 Connected to 5 camera (color/monochrome): 7, Connected to 6 camera (color/monochrome): 6 Connected to 7 camera (color/monochrome): 5, Connected to 8 camera (color/monochrome): 4					
		Connected to a 4 million-pixel camera		Connected to 1 camera (color/monochrome): 20, Connected to 2 camera (color/monochrome): 10 Connected to 3 camera (color/monochrome): 6, Connected to 4 camera (color/monochrome): 5 Connected to 5 camera (color/monochrome): 4, Connected to 6 camera (color/monochrome): 3 Connected to 7 camera (color/monochrome): 2, Connected to 8 camera (color/monochrome): 2					
		Connected to a 12 million-pixel camera		Connected to 1 camera (color/monochrome): 6, Connected to 2 camera (color/monochrome): 3 Connected to 3 camera (color/monochrome): 2, Connected to 4 camera (color/monochrome): 2					
	Operation			Mouse or similar device					
	Settings			Create series of processing steps by editing the flowchart (help messages provided)					
External interface	Serial communications			RS-232C: 1 CH					
	Ethernet communications			No protocol (TCP/UDP) 1000BASE-T					
				1 port	2 port	2 port	1 port	2 port	2 port
	EtherNet/IP communications			Ethernet port baud rate: 1 Gbps (1000BASE-T)					
	EtherCAT communications			EtherCAT protocol (100BASE-TX)					
	Parallel I/O			(In the 2-line random trigger mode) 17 inputs (STEP0/ENCTRIG_Z0, STEP1/ENCTRIG_Z1, ENCTRIG_A0 to 1, ENCTRIG_B0 to 1, DSA0 to 1, DIO to 7, DI_LINEO) 37 outputs (RUNO to 1, READY 0 to 1, BUSYO to 1, ORO to 1, ERRORO to 1, GATEO to 1, STGOUT0/SHTOUT0, STGOUT1/SHTOUT1, STGOUT2 to 7, DO0 to 15, ACK) (In the 5 -line to 8 -line random trigger mode) 19 inputs (STEPO to 7, DI_LINEO to 2, DIO to 7) 34 outputs (READY0 to 7, BUSY0 to 7, OR0 to 7, ACK, ERROR, STGOUT/SHTOUT0 to 7)					
	Encoder interface			RS422-A line driver level Phase A/B: single-phase 4 MHz (multiplying phase difference of 1 MHz by 4 times) Phase Z: 1 MHz					
	Monitor interface			DVI-I output IF x 1ch					
	USB interface			4 channels (supports USB 1.1 and 2.0)					
	SD card interface			SDHC card of Class 4 or higher rating is recommended					
Ratings	Power supply voltage			20.4 to 26.4 VDC					
	Current consumption (at 24 VDC) ${ }^{*}$	Connected to a intelligent compact camera	2 cameras	5.0 A max.	5.4 A max.	6.4 A max.	4.7 A max.	5.0 A max.	5.9 A max.
			4 cameras	-	7.0 A max.	8.1 A max.	-	6.5 A max.	7.5 A max.
			8 cameras	-	-	11.5 A max.	-		10.9 A max.
		Connected to a 300,000pixel camera, 2/4/5/12 mil-lion-pixel camera	2 cameras	4.1 A max.	4.2 A max.	5.2 A max.	3.6 A max.	3.7 A max.	4.5 A max.
			4 cameras	-	4.8 A max.	5.6 A max.		4.3 A max.	5.0 A max.
			8 cameras	-	-	6.8 A max.	-	-	6.2 A max.
	Insulation resistance			Between DC power supply and controller FG: $20 \mathrm{M} \Omega$ or higher (rated voltage 250 V)					
Operation environment	Noise immunity	Fast transient burst	DC power supply	Direct infusion: 2 KV , Pulse rising: 5 ns , Pulse width: 50 ns Burst continuation time: $15 \mathrm{~ms} / 0.75 \mathrm{~ms}$, Period: 300 ms , Application time: 1 min					
			1/O line	Cramp: 1 KV , Pulse rising: 5 ns , Pulse width: 50 ns Burst continuation time: $15 \mathrm{~ms} / 0.75 \mathrm{~ms}$, Period: 300 ms , Application time: 1 min					
	Ambient temperature range			Operating: 0 to $50^{\circ} \mathrm{C}$ Storage: - 20 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)					
	Ambient humidity range			Operating and storage: 35% to 85\% (with no condensation)					
	Ambient atmosphere			No corrosive gases					
	Grounding			Type D grounding (100Ω or less grounding resistance) Conventional type 3 grounding					
	Degree of protection			IEC60529 IP20					

Type			High-speed controllers (4 core)			Standard controllers (2 core)							
Model		NPN	FH-3050	FH-3050-10	FH-3050-20	FH-1050	FH-1050-10	FH-1050-20					
		PNP											
Dimensions	Dimensions		$190 \times 115 \times 182.5 \mathrm{~mm}$										
	Weight		Approx. 3.2 kg Approx. 3.4 kg Approx. 3.4 kg Approx. 3.2 kg Approx. 3.4 kg Approx. 3.4 kg Cover: zinc-plated steel plate, side plate: aluminium (A6063)										
	Case materials												
Accessories			Controller (1) / User manual (one Japanese and one English versions) / Instruction installation manual (1) / Power supply terminal block connector (1) / Ferrite core (2, FH-3050 and FH-1050), (4, FH-3050-10 and FH-1050-10), (8, FH-3050-20 and FH-1050-20)										

*1. The image logging capacity changes when multiple cameras of different types are connected at the same time.
*2. The current consumption when the maximum number of cameras supported by each controller are connected. If a lighting controller model is connected to a lamp, the current consumption is as high as when an intelligent compact CMOS camera is connected.

Camera specifications

High-speed CMOS camera

Model	FH-SM	FH-SC	FH-SM02	FH-SC02	FH-SM04	FH-SC04	FH-SM12	FH-SC12
Image elements	$1 / 3$-inch CMOS imageelements		2/3-inch CMOS imageelements		1-inch CMOS image elements		1.76-inch CMOS image elements	
Color/Monochrome	Monochrome	Color	Monochrome	Color	Monochrome	Color	Monochrom	Color
Effective pixels	640 (H) x 480 (V)		2040 (H) x 1088 (V)		2040 (H) x 2048 (V)		4084 (H) x 3072 (V)	
Imaging area H x V (opposing corner)	4.8×3.6 (6.0 mm)		11.26×5.98 (12.76 mm)		11.26×11.26 (15.93 mm)		22.5×16.9 (28.14 mm)	
Pixel size	$7.4(\mu \mathrm{~m}) \times 7.4(\mu \mathrm{~m})$		$5.5(\mu \mathrm{~m}) \times 5.5(\mu \mathrm{~m})$		$5.5(\mu \mathrm{~m}) \times 5.5(\mu \mathrm{~m})$		$5.5(\mu \mathrm{~m}) \times 5.5(\mu \mathrm{~m})$	
Electronic shutter function	Shutter speeds can be set from $20 \mu \mathrm{~s}$ to 100 ms		Shutter speeds can be set from 25μ s to 100 ms				Shutter speeds can be set from $60 \mu \mathrm{~s}$ to 100 ms	
Partial function	1 to 480 lines	2 to 480 lines	1 to 1088 lines	2 to 1088 lines	1 to 2048 lines	2 to 2048 lines	$\begin{array}{\|l\|} \hline 4 \text { to } 3072 \text { li } \\ \text { (4-line incre } \\ \hline \end{array}$	
Frame rate (image read time)	308 fps (3.3 ms)		$219 \mathrm{fps}(4.6 \mathrm{~ms})^{\text {¹ }}$		$118 \mathrm{fps}(8.5 \mathrm{~ms})^{* 1}$		$38.9 \mathrm{fps}(25.7 \mathrm{~ms})^{-1}$	
Lens mounting	C mount						M42 mount	
Field of vision, installation distance	Selecting a lens according to the field of vision and installation distance							
Ambient temperature range	Operating: 0 to $40^{\circ} \mathrm{C}$ Storage: - 25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)							
Ambient humidity range	Operating and storage: 35% to 85\% (with no condensation)							
Weight	Approx. 105 g		Approx. 110 g				Approx. 320 g	
Accessories	Instruction manual							

*1. Frame rate in high speed mode when the camera is connected using two camera cables.
Digital CCD camera

Model	FZ-S	FZ-SC	FZ-S2M	FZ-SC2M	FZ-S5M2	FZ-SC5M2
Image elements	Interline transfer reading all pixels $1 / 3$-inch CCD image elements		Interline transfer reading all pixels $1 / 1.8$-inch CCD image elements		Interline transfer reading all pixels 2/3-inch CCD image elements	
Color/Monochrome	Monochrome	Color	Monochrome	Color	Monochrome	Color
Effective pixels	640 (H) $\times 480$ (V)		1600 (H) x 1200 (V)		2448 (H) x 2044 (V)	
Imaging area H x V (opposing corner)	4.8×3.6 (6.0 mm)		7.1×5.4 (8.9 mm)		8.4×7.1 (11 mm)	
Pixel size	$7.4(\mu \mathrm{~m}) \times 7.4(\mu \mathrm{~m})$		$4.4(\mu \mathrm{~m}) \times 4.4(\mu \mathrm{~m})$		3.45 ($\mu \mathrm{m}$) $\times 3.45$ ($\mu \mathrm{m}$)	
Electronic shutter function	Select shutter speeds from 20μ s to 100 ms					
Partial function	12 to 480 lines		12 to 1200 lines		12 to 2044 lines	
Frame rate (image read time)	80 fps (12.5 ms)		30 fps (33.3 ms)		16 fps (62.5 ms)	
Lens mounting	C mount					
Field of vision, installation distance	Selecting a lens according to the field of vision and installation distance					
Ambient temperature range	Operating: 0 to $50^{\circ} \mathrm{C}$ Storage: - 25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)		Operating: 0 to $40^{\circ} \mathrm{C}$ Storage: - 25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)			
Ambient humidity range	Operating and storage: 35% to 85\% (with no condensation)					
Weight	Approx. 55 g		Approx. 76 g		Approx. 140 g	
Accessories	Instruction manual					

Small digital CCD camera

High-speed CCD camera

Model	FZ-SH	FZ-SHC
Image elements	Interline transfer reading all pixels, $1 / 3$-inch CCD image elements	
Color/Monochrome	Monochrome	
Effective pixels	$640(\mathrm{H}) \times 480(\mathrm{~V})$	
Imaging area $\mathbf{H} \mathbf{x}$ V (opposing corner)	$4.8 \times 3.6(6.0 \mathrm{~mm})$	
Pixel size	$7.4(\mu \mathrm{~m}) \times 7.4(\mu \mathrm{~m})$	
Electronic shutter function	Select shutter speeds from $1 / 10$ to $1 / 50,000 \mathrm{~s}$	
Partial function	12 to 480 lines	
Frame rate (image read time)	204 fps $(4.9 \mathrm{~ms})$	
Field of vision, installation distance	Selecting a lens according to the field of vision and installation distance	
Ambient temperature range	Operating: 0 to $40^{\circ} \mathrm{C}$ Storage: -25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation) Ambient humidity range	Operating and storage: 35% to 85% (with no condensation)
Weight	Approx. 105 g	
Accessories	Instruction manual	

Intelligent compact CMOS camera

Model	FZ-SQ010F	FZ-SQ050F	FZ-SQ100F	FZ-SQ100N
Image elements	1/3-inch CMOS image elements			
Color/Monochrome	Color			
Effective pixels	752 (H) $\times 480$ (V)			
Imaging area H x V (opposing corner)	4.51×2.88 (5.35 mm)			
Pixel size	6.0 ($\mu \mathrm{m}$) $\times 6.0(\mu \mathrm{~m})$			
Shutter function	1/250 to 1/32,258			
Partial function	8 to 480 lines			
Frame rate (image read time)	60 fps			
Field of vision	7.5×4.7 to $13 \times 8.2 \mathrm{~mm}$	13×8.2 to $53 \times 33 \mathrm{~mm}$	53×33 to $240 \times 153 \mathrm{~mm}$	29×18 to $300 \times 191 \mathrm{~mm}$
Installation distance	38 to 60 mm	56 to 215 mm	220 to 970 mm	32 to 380 mm
LED class ${ }^{\text {+1/1 }}$	Risk Group 2			
Ambient temperature range	Operating: 0 to $50^{\circ} \mathrm{C}$ Storage: - -25 to $65^{\circ} \mathrm{C}$			
Ambient humidity range	Operating and storage: 35% to 85\% (with no condensation)			
Weight	Approx. 150 g		Approx. 140 g	
Accessories			Instruction manual, mounting bracket (FQ-XL), polarizing filter attachment (FQ-XF1) and warning label	

*1. Applicable standards: IEC62471-2.

LCD monitor specifications

Model	FZ-M08
Size	8.4 inches
Type	Liquid crystal color TFT
Resolution	$1,024 \times 768$ dots
Input signal	Analog RGB video input, 1 channel
Power supply voltage	21.6 to 26.4 VDC
Current consumption	Approx. 0.7 A max.
Ambient temperature range	Operating: 0 to $50^{\circ} \mathrm{C}$ Storage: -25 to $65{ }^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity range	Operating and storage: 35% to 85% (with no condensation)
Weight	Approx. 1.2 kg
Accessories	Instruction sheet and 4 mounting brackets

EtherCAT communication specifications

Item		Specifications
Communications standard		IEC61158 Type 12
Physical layer		100BASE-TX (IEEE802.3)
Modulation		Base band
Baud rate		100 Mbps
Topology		Depends on the specifications of the EtherCAT master
Transmission media		Twisted-pair cable of category 5 or higher (double-shielded straight cable with aluminum type and braiding)
Transmission distance		Distance between nodes: 100 m or less
Node address setting		00 to 9
External connection terminals		RJ45 2 (shielded), IN: EtherCAT input data, OUT: EtherCAT output data
Send/receive PDO data sizes	Input	56 to 280 bytes/line (including input data, status and unused areas). Up to 8 lines can be set ${ }^{11}$
	Output	28 bytes/line (including output data and unused areas). Up to 8 lines can be set ${ }^{\text {¹ }}$
Mailbox data size	Input	512 bytes
	Output	512 bytes
Mailbox		Emergency messages, SDO requests and SDO information
Refreshing methods		I/O-synchronized refreshing (DC)

${ }^{*}$. This depends on the upper limit of the master.

Nomenclature

FH sensor controller (4 camera type)

	Name	Description
[1]	POWER LED	Lit while power is ON
[2]	ERROR LED	Lit when an error has occurred
[3]	RUN LED	Lit while the controller is in measurement mode
[4]	ACCESS LED	Lit while the memory is accessed
[5]	SD POWER LED	Lit while the power is supplied to the SD card and the card is usable
[6]	SD BUSY LED	Blinks while the SD memory card is accessed
[7]	EtherCAT RUN LED	Lit while EtherCAT communications are usable
[8]	EtherCAT LINK/ACT IN LED	Lit when connected with an EtherCAT device, and blinks while performing communications
[9]	EtherCAT LINK/ACT OUT LED	Lit when connected with an EtherCAT device, and blinks while performing communications
[10]	EtherCAT ERR LED	Lit when EtherCAT communications have become abnormal
[11]	EtherNet NET RUN1 LED	Lit while EtherNet communications are usable
[12]	EtherNet NET LINK/ACK1 LED	Lit when connected with an EtherNet device, and blinks while performing communications
[13]	EtherNet NET RUN2 LED	Lit when EtherNet communications are usable
[14]	EtherNet NET LINK/ACK2 LED	Lit when connected with an EtherNet device, and blinks while performing communications
	Name	Description
A	SD memory card installation connector	Install the SD memory card. Do not plug or unplug the SD card during measurement operation Otherwise measurement time may be affected or data may be destroyed
B	EtherNet connector	Connect an EtherNet device
C	USB connector	Connect a USB device. Do not plug or unplug it during measurement operation Otherwise measurement time may be affected or data may be destroyed
D	RS-232C connector	Connect an external device such as programmable controller
E	DVI-I connector	Connect a monitor
F	I/O connector (control lines, data lines)	Connect the controller to external devices such as a sync sensor and PLC
G	EtherCAT address setup volume	Used to set a node address (00 to 99) as an EtherCAT communication device
H	EtherCAT communication connector (IN)	Connect the opposed EtherCAT device
I	EtherCAT communication connector (OUT)	Connect the opposed EtherCAT device
J	Encoder connector	Connect an encoder
K	Camera connector	Connect cameras
L	Power supply terminal connector	Connect a DC power supply. Wire the controller independently on other devices. Wire the ground line Be sure to ground the controller alone. Perform wiring using the attached power supply connector

Dimensions

FH sensor controller

Camera

High-speed CMOS camera

2 million-pixel camera 4 million-pixel camera
FH-SC02 FH-SC04
FH-SM02

Four, M3 mounting holes with a depth of 4.5 mm

Digital CCD camera

Small digital CCD camera

High-speed CCD camera

Intelligent compact CMOS camera

LCD monitor
FZ-M08

Optical chart

High-speed CMOS camera FH-S $\square 12$, 12-million pixel

High-speed CMOS camera FH-S $\square 04$, 4 million-pixel

Field of vision (mm)

High-speed CMOS camera FH-S $\square 02$, 2 million-pixel

High-speed CMOS camera FH-S \square / High-speed CCD camera FZ-SH \square / Digital CCD camera FZ-S $\square, 300,000$-pixel

Digital CCD camera FZ-S $\square 5 \mathrm{M} 2$, 5 million-pixel

Digital CCD camera FZ-S $\square \mathbf{2 M}$, 2 million-pixel

Small digital CCD camera FZ-SF \square, FZ-SP \square, 300,000-pixel

High-speed CMOS camera FH-S \square / High-speed CCD camera FZ-SH \square / Digital CCD camera FZ-S $\square, 300,000$-pixel (vibrations and shocks resistant)

Field of vision (mm)

Digital CCD camera FZ-S \square 5M2, 5 million-pixel (vibrations and shocks resistant)

Digital CCD camera FZ-S $\square \mathbf{2 M}$, 2 million-pixel (vibrations and shocks resistance)

Meaning of optical chart

The X axis of the optical chart shows the field of vision $(\mathrm{mm})^{*}$, and the Y axis of the optical chart shows the camera installation distance (mm). ${ }^{*}$ 2

*1. The lengths of the fields of vision given in the optical charts are the lengths of the Y axis.
*2. The vertical axis represents WD for small cameras.

Intelligent compact CMOS camera

- Narrow View FZ-SQ010F

- Wide View (Long-distance)

- Standard FZ-SQ050F

- Wide View (Short-distance) FZ-SQ100N

Ordering information

Sensor controller

Type	CPU	No. of cameras	Output	Model	Appearance
Box-type controllers	High-speed controllers (4 core)	2	NPN/PNP	FH-3050	
		4	NPN/PNP	FH-3050-10	
		8	NPN/PNP	FH-3050-20	
	Standard controllers (2 core)	2	NPN/PNP	FH-1050	
		4	NPN/PNP	FH-1050-10	
		8	NPN/PNP	FH-1050-20	

Camera

[^15]
Lenses

C-mount lens for $1 / 3$-inch image sensor

Type	Specifications					Model	Appearance/Dimensions (mm)
	Focal length	Brightness	Filter size	Max. sensor size	Mount		
C-mount lens for 1/3-inch image sensor (Recommend: FZ-S $\square /$ FZ-SH $\square / \mathrm{FH}-\mathrm{S} \square$)	6 mm	F1.4	M27.0 P0.5	$1 / 3$ inch	C-mount	3Z4S-LE SV-0614V	
	8 mm	F1.3	M25.5 P0.5			3Z4S-LE SV-0813V	
	12 mm	F1.4	M27.0 P0.5			3Z4S-LE SV-1214V	
	16 mm	F1.4	M27.0 P0.5			3Z4S-LE SV-1614V	
	25 mm	F1.4	M27.0 P0.5			3Z4S-LE SV-2514V	
	35 mm	F1.8	M27.0 P0.5			3Z4S-LE SV-3518V	
	50 mm	F1.8	M30.5 P0.5			3Z4S-LE SV-5018V	
	75 mm	F2.7	M30.5 P0.5			3Z4S-LE SV-7527V	
	100 mm	F3.5	M30.5 P0.5			3Z4S-LE SV-10035V	
							43.9 [WD: ∞] to 46.3[WD:1000

C-mount lens for 2/3-inch image sensor

Type	Specifications					Model	Appearance/Dimensions (mm)
	Focal length	Brightness	Filter size	Max. sensor size	Mount		
C-mount lens for 2/3-inch image sensor (Recommend: FZ-S $\square 2 \mathrm{M} /$ FZ-S $\square 5 \mathrm{M} 2)$	6 mm	F1.4	M40.5 P0.5	2/3 inch	C-mount	3Z4S-LE SV-0614H	
	8 mm	F1.4	M35.5 P0.5			3Z4S-LE SV-0814H	
	12 mm	F1.4	M27.0 P0.5			3Z4S-LE SV-1214H	
	16 mm	F1.4	M27.0 P0.5			3Z4S-LE SV-1614H	
	25 mm	F1.4	M27.0 P0.5			3Z4S-LE SV-2514H	
	35 mm	F1.4	M35.5 P0.5			3Z4S-LE SV-3514H	
	50 mm	F1.4	M40.5 P0.5			3Z4S-LE SV-5014H	
	75 mm	F2.5	M34.0 P0.5	1 inch		3Z4S-LE SV-7525H*1	
	100 mm	F2.8	M37.5 P0.5			3Z4S-LE SV-10028H*1	
							39 dia. $\begin{aligned} & 66.5[\mathrm{WD}: \infty] \text { to } \\ & 71.6[\mathrm{WD}: 2000]\end{aligned}$

[^16]
C-mount lens for 1-inch image sensor

Type	Specifications					Model	Appearance/Dimensions (mm)
	Focal length	Brightness	Filter size	Max. sensor size	Mount		
```C-mount lens for 1-inch image sensor (Recommend: FH-S }\square02 FH-S }\square04\mp@subsup{4}{}{*1}\mathrm{ )```	6 mm	F1.8	Can not be used with a filter	1 inch	C-mount	3Z4S-LE VS-0618H1	
	8 mm	F1.4	M55.0 P0.75			3Z4S-LE VS-0814H1	
	12 mm	F1.4	M35.5 P0.5			3Z4S-LE VS-1214H1	
	16 mm	F1.4	M30.5 P0.5			3Z4S-LE VS-1614H1	
	25 mm	F1.4	M30.5 P0.5			3Z4S-LE VS-2514H1	
	35 mm	F1.4	M30.5 P0.5			3Z4S-LE VS-3514H1	
	50 mm	F1.8	M40.5 P0.5			3Z4S-LE VS-5018H1	
							44 dia.$44.5[W D: \infty]$ to   $49.5[W D: 500]$

*1. 3Z4S-LE SV-7525H with focal length of 75 mm and 3Z4S-LE SV-10028H with local length of 100 mm are also available.
M42-mount lens for large image sensor


## Lens for small camera

Type	Specifications		Model	Appearance/Dimensions (mm)
	Focal length	Brightness		
Lens for small camera	3 mm	F2.0	FZ-LES3	
	6 mm	F2.0	FZ-LES6	
	16 mm	F3.4	FZ-LES16	
	30 mm	F3.4	FZ-LES30	

## Vibrations and shocks resistant, C-mount lens for 2/3-inch image sensor


*1. Insert the iris range into $\square$ in the model number as follows:
$F=$ Aperture: Blank
$F=5.6=$ FN056
$\mathrm{F}=8=\mathrm{FN} 080$
*2. F-number can be selected from maximum aperture, 5.6 and 8.0.
*3. When circle of least confusion is $40 \mu \mathrm{~m}$.

## Extension tubes

Type	Specifications	Model
For M42-mount lens ${ }^{* 1}$	Set of 5 tubes: $20 \mathrm{~mm}, 10 \mathrm{~mm}, 8 \mathrm{~mm}, 2 \mathrm{~mm}$ and 1 mm   Maximum outer diameter: 47.5 mm dia.	3Z4S-LE VS-EXR/M42
For C-mount lens ${ }^{1}$	Set of 7 tubes: $40 \mathrm{~mm}, 20 \mathrm{~mm}, 10 \mathrm{~mm}, 5 \mathrm{~mm}, 2.0 \mathrm{~mm}, 1.0 \mathrm{~mm}$ and 0.5 mm   Maximum outer diameter: 30 mm dia.	3Z4S-LE SV-EXR
For small digital CCD camera	Set of 3 tubes: $15 \mathrm{~mm}, 10 \mathrm{~mm}$ and 5 mm   Maximum outer diameter: 12 mm dia..	FZ-LESRR

*1. Do not use the $0.5 \mathrm{~mm}, 1.0 \mathrm{~mm}$ and 2.0 mm extension tubes attached to each other. Since these extension tubes are placed over the threaded section of the lens or other extension tube, the connection may loosen when more than one $0.5 \mathrm{~mm}, 1.0 \mathrm{~mm}$ or 2.0 mm extension tube are used together. Reinforcement is required to protect against vibration when extension tubes exceeding 30 mm are used. When using the extension tube, check it the actual device before using it.

## Camera accessories



## Cables

Type	Specifications	Model	Appearance
Camera cable	Standard camera cable Cable length: $2 \mathrm{~m}, 5 \mathrm{~m}$ or $10 \mathrm{~m}^{* 1}$	FZ-VS	
	Bend resistant camera cable Cable length: $2 \mathrm{~m}, 5 \mathrm{~m}$ or $10 \mathrm{~m}^{* 1}$	FZ-VSB	
	Right-angle camera cable ${ }^{* 2}$ Cable length: $2 \mathrm{~m}, 5 \mathrm{~m}$ or $10 \mathrm{~m}^{* 1}$	FZ-VSL	$0$
	Long distance camera cable Cable length: $15 \mathrm{~m}^{* 1}$	FZ-VS2	$\Rightarrow$
	Long distance right-angle camera cable Cable length: $15 \mathrm{~m}^{* 1}$	FZ-VSL2	
Cable extension unit	Up to two extension units and three cables can be connected (Maximum cable length: $45 \mathrm{~m}^{* 2}$ )	FZ-VSJ	
Monitor cable	Cable length: 2 m or 5 m (When you connect a LCD monitor FZ-M08 to FH sensor controller, please use it in combination with a DVI-I-RGB conversion connector FH-VMRGB)	FZ-VM	
DVI-I-RGB conversion connector		FH-VMRGB	
Parallel I/O cable*3	Cable length: 2 m	XW2Z-S013-2	
	Cable length: 5 m	XW2Z-S013-5	
Parallel I/O cable for connector-terminal conversion unit ${ }^{* 3}$	Cable length: 0.5 m	XW2Z-050EE	
	Cable length: 1 m	XW2Z-100EE	
	Cable length: 1.5 m	XW2Z-150EE	
	Cable length: 2 m	XW2Z-200EE	
	Cable length: 3 m	XW2Z-300EE	
	Cable length: 5 m	XW2Z-500EE	


Type	Specifications	Model	Appearance
Connector-terminal block   conversion units, general-   purpose devices	Wiring method: Phillips screw	XW2R-J34G-T	
	Wiring method: Slotted screw (rise up)	XW2R-E34G-T	
Encoder cable for line-driver	Wiring method: Push-in spring	XW2R-P34G-T	

*1. The maximum cable length depends on the camera being connected, and the model and length of the cable being used. When a high-speed CMOS camera FH-S $\square 02 /-\mathrm{S} \square 04$ is used in the high speed mode of transmission speed, two camera cables are required.
*2. This cable has an L-shaped connector on the camera end
*3. 2 cables are required for all I/O signals.

## Accessories

Type	Specifications	Model	Appearance
LCD monitor	For box-type controllers	FZ-M08	
USB memory	2 GB	FZ-MEM2G	
	8 GB	FZ-MEM8G	
SD card	2 GB	HMC-SD291	\#
	4 GB	HMC-SD491	
VESA attachment	For installing the LCD integrated-type controller	FZ-VESA	
Desktop controller stand	For installing the LCD integrated-type controller	FZ-DS	
Display / USB switcher		FZ-DU	

## Development environment

Please purchase a CD-ROM and licenses the first time you purchase the Application Producer. CD-ROM's and licenses are available individually. The license does not include the CD-ROM.

Product	Specifications			Model
	Description	Number of licenses	Media	
Application Producer	Software components that provide a development environment to further customize the standard controller features of the FH series. System requirements:   - CPU: Intel Pentium Processor (SSE2 or higher)   - OS: Windows $7 / 8$ (32-bit/64-bit version)   - .NET Framework: . . ET Framework 3.5 or higher   - Memory: At least 2 GB RAM, at least 2 GB available disk space   - Browser: Microsoft ${ }^{\ominus}$ Internet Explorer 6.0 or higher   - Display: XGA (1024 x 768), true color (32-bit) or higher   - Optical drive: CD/DVD drive   The following software is required to customize the software:   Microsoft ${ }^{\text { }}$ Visual Studio 2012/2010/2008 Professional	- (Media only)	CD-ROM	FH-AP1
		1 license	-	FH-AP1L

## Computer software

Item	Model
Sysmac Studio version 1.07 or higher	SYSMAC-SE2 $\square \square \square$

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat.No.SysCat_Q031-E2-02 In the interest of product improvement, specifications are subject to change without notice.

## FQ-M series

## Vision sensor

## Designed for object tracking

The new FQ-M Series is a vision sensor designed specifically for pick and place applications.

- Camera, image processing and connectivity in one
- Shape based object detection
- Connectivity with EtherCAT/Ethernet
- Encoder input for object tracking and easy calibration
- Up to 5000 pieces per minute with 360 degree rotation
- Flexible data output depending on the output devices


## System configuration



* Sysmac Studio and Touch Finder can not be used together. When both are connected, Sysmac Studio will have a priority. When you use the Sysmac Studio Standard Edition and connect the FQ-M Series and the Machine Automation Controller NJ-Series, connect them with a general-purpose Ethernet cable or a USB cable.

1. EtherCAT and Ethernet (PLC Link) can not be used simultaneously.
2. It is not possible to configure and adjust the FQ-M via an $N J$-Series controller, when they are connected via an EtherCAT network. For configuration and adjustment of FQ-M, connect the FQ-M and a computer or a Touch Finder via an Ethernet network.

Specifications

## Sensor specifications

Item Type		EtherCAT communication function provided	
		Color	Monochrome
Model	NPN	FQ-MS120-ECT	FQ-MS120-M-ECT
	PNP	FQ-MS125-ECT	FQ-MS125-M-ECT
Field of vision, installation distance		Selecting a lens according to the field of vision and installation distance. Refer to "Optical Chart"page	
Main functions	Inspection items	Shape search, Search, Labeling, Edge position	
	Number of simultaneous inspections	32	
	Number of registered scenes	32	
Image input	Image processing method	Real color	Monochrome
	Image elements	1/3-inch color CMOS	1/3-inch monochrome CMOS
	Image filter	High dynamic range (HDR) and white balance	High dynamic range (HDR)
	Shutter	Electronic shutter; select shutter speeds from 1/10 to 1/30000 (sec)	
	Processing resolution	752 (H) $\times 480$ (V)	
	Pixel size	$6.0(\mu \mathrm{~m}) \times 6.0(\mu \mathrm{~m})$	
	Frame rate (image read time)	$60 \mathrm{fps}(16.7 \mathrm{~ms})$	
External Lightings	Connecting method	Connection via a strobe light controller	
	Connectable lighting	FL Series	
Data logging	Measurement data	In Sensor: Max. 32000 items ${ }^{* 1}$	
	Images	In Sensor: 20 images $^{* 1}$	
Measurement trigger		I/O trigger, Encoder trigger, Communications trigger (Ethernet No-protocol, PLC Link or EtherCAT)	
I/O specifications	Input signals	9 signals   - Single measurement input (TRIG)   - Error clear input (INO)   - Error counter reset input (IN1)   - Encoder input $\left(\mathrm{A}_{ \pm}, \mathrm{B}_{ \pm}, \mathrm{Z}_{ \pm}\right)^{*}{ }^{2}$	
	Output signals	5 signals ${ }^{* 3}$   - OUTO Overall judgement output (OR)   - OUT1 Control output (BUSY)   - OUT2 Error output (ERROR)   - OUT3 Shutter output (SHTOUT)   - OUT4 Strobe trigger output (STGOUT)	
	Ethernet specifications	100BASE-TX/10BASE-TX	
	EtherCAT specifications	Dedicated protocol for EtherCAT 100BASE-TX	
	Connection method	Special connector cables   - Power supply and I/O: 1 special connector I/O cable   - Touch Finder, Computer and Ethernet: 1 Ethernet cable   - EtherCAT: 2 EtherCAT cable	
LED display	LED display	- OR: Judgment result indicator   - ERR: Error indicator   - BUSY: BUSY indicator   - ETN: Ethernet communications indicator	
	EtherCAT display	- L/A IN (Link/Activity IN) $\times 1$   - L/A OUT (Link/Activity OUT) $\times 1$   - RUN $\times 1$   - ERR $\times 1$	
Ratings	Power supply voltage	21.6 to 26.4 VDC (including ripple)	
	Insulation resistance	Between all lead wires and case: $0.5 \mathrm{M} \Omega$ (at 250 V )	
	Current consumption	450 mA max. (When the FL-Series Strobe controller and lighting are used) 250 mA max. (When external lighting is not used)	
Environmental immunity	Ambient temperature range	Operating: 0 to $50^{\circ} \mathrm{C}$, Storage: -20 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)	
	Ambient humidity range	Operating and storage: $35 \%$ to $85 \%$ (with no condensation)	
	Ambient atmosphere	No corrosive gas	
	Vibration resistance (destruction)	10 to 150 Hz , single amplitude: $0.35 \mathrm{~mm}, \mathrm{X} / \mathrm{Y} / \mathrm{Z}$ directions, 8 min each, 10 times	
	Shock resistance (destruction)	$150 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in 6 direction (up, down, right, left, forward and backward)	
	Degree of protection	IEC60529 IP40	
Materials		Case: aluminium die casting, Rear cover: aluminium plate	
Weight		Approx. 480 g (Sensor only)	
Accessories		Instruction Manual	

*1 If a Touch Finder is used, results can be saved up to the capacity of an SD card.
*2 Encoder input specifications
*3 The five output signals can be allocated for the judgements of individual inspection items.

Pulse input specifications (when an open collector type encoder is used)

Item		Specifications		
Input voltage		24 VDC $\pm 10 \%$	$12 \mathrm{VDC} \pm 10 \%$	5 VDC $\pm 5 \%$
Input current		4.8 mA (at 24 VDC , typical value)	2.4 mA (at 12 VDC , typical value)	1.0 mA (at 5 VDC, typical value)
NPN	ON voltage ${ }^{* 1}$	4.8 V max.	2.4 V max.	1.0 V max.
	OFF voltage*2	19.2 V min.	9.6 V min.	4.0 V min.
PNP	ON voltage* ${ }^{*}$	19.2 V min.	9.6 V min.	4.0 V min.
	OFF voltage ${ }^{*}{ }^{2}$	4.8 V max.	2.4 V max.	1.0 V max.


Item	
Maximum response frequency ${ }^{* 3}$	$50 \mathrm{kHz}(I / \mathrm{O}$ cable: when the FQ-MWD005 or FQ-MWDL005 cables is used)   $20 \mathrm{kHz}(I / \mathrm{c}$ cable: when the FQ-MWD010 or FQ-MWDL010 cables is used)
Input impedance	$5.1 \mathrm{k} \Omega$

*1 ON voltage: Voltage to change from OFF to ON state. The ON voltage is the difference of voltages between the GND terminal of the encoder power terminals and each input terminal.

* 2 OFF voltage: Voltage to change from ON to OFF state. The ON voltage is the difference of voltages between the GND terminal of the encoder power terminals and each input terminal.
*3 Select maximum response frequency depending on length of the encoder cable and response frequency of the encoder.
Pulse input specifications (when a line-driver output type encoder is used)

Item	Specifications
Input voltage	EIA standard RS-422-A line driver level
Input impedance *1	$120 \Omega \pm 5 \%$
Differential input voltage	0.2 V min.
Hysteresis voltage	50 mV
Maximum response frequency ${ }^{\text {² }}$	200 kHz (I/O cable: when the FQ-MWD005, FQ-MWDL005, FQ-MWD010 or FQ-MWDL010 cable is used)

## Touch Finder specifications

Item	$\begin{gathered} \text { Type } \\ \text { Model } \end{gathered}$		Model with DC power supply	Model with AC/DC/battery power supply
			FQ-MD30	FQ-MD31
Number of connectable sensors			2 max.	
Main functions	Types of measurement displays		Last result display, last NG display, trend monitor, histograms	
	Types of display images		Through, frozen, zoom-in and zoom-out images	
	Data logging		Measurement results, measured images	
	Menu language		English, Japanese	
Indications	LCD	Display device	3.5-inch TFT color LCD	
		Pixels	$320 \times 240$	
		Display colors	16,777,216	
	Backlight	Life expectancy*1	50,000 hours at $25^{\circ} \mathrm{C}$	
		Brightness adjustment	Provided	
		Screen saver	Provided	
	Indicators	Power indicator (color: green)	POWER	
		Error indicator (color: red)	ERROR	
		SD card access indicator (color: yellow)	SD ACCESS	
		Charge indicator (color: orange)	-	CHARGE
Operation interface	Touch screen	Method	Resistance film	
		Life expectancy* ${ }^{*}$	1,000,000 operations	
External interface	Ethernet		100 BASE-TX/10 BASE-T	
	SD card		Omron SD card (Model: HMC-SD291) or a SDHC card of Class4 or higher rating is recommended	
Ratings	Power supply voltage	DC power connection	20.4 to 26.4 VDC (including ripple)	
		AC adapter connection	-	100 to 240 VAC, $50 / 60 \mathrm{~Hz}$
		Battery connection	-	FQ-BAT1 Battery (1 cell, 3.7 V)
	Continuous operation on Battery ${ }^{* 3}$		-	1.5 h
	Current consumption		DC power connection: 0.2 A	
	Insulation resistance		Between all lead wires and case: $0.5 \mathrm{M} \Omega$ (at 250 V )	
Environmental immunity	Ambient temperature range		Operating: 0 to $50^{\circ} \mathrm{C}$   Storage: -25 to $65^{\circ} \mathrm{C}$   (with no icing or condensation)	Operating: 0 to $50^{\circ} \mathrm{C}$ when mounted to DIN Track or panel 0 to $40^{\circ} \mathrm{C}$ when operated on a Battery   Storage: -25 to $65^{\circ} \mathrm{C}$   (with no icing or condensation)
	Ambient humidity range		Operating and storage: $35 \%$ to $85 \%$ (with no condensation)	
	Ambient atmosphere		No corrosive gas	
	Vibration resistance (destruction)		10 to 150 Hz , single amplitude: $0.35 \mathrm{~mm}, \mathrm{X} / \mathrm{Y} / \mathrm{Z}$ directions 8 min each, 10 times	
	Shock resistance (destruction)		$150 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in 6 direction (up, down, right, left, forward and backward)	
	Degree of protection		IEC 60529 IP20	
Dimensions			$95 \times 85 \times 33 \mathrm{~mm}$	
Materials			Case: ABS	
Weight			Approx. 270 g (without Battery and hand strap)	
Accessories			Touch Pen (FQ-XT), Instruction Manual	

*1 This is a guideline for the time required for the brightness to diminish to half the initial brightness at room temperature and humidity. No guarantee is implied. The life of the backlight is greatly affected by the ambient temperature and humidity. It will be shorter at lower or higher temperature.
*2 This value is only a guideline. No guarantee is implied. The value will be affected by operating conditions.
*3 This value is only a guideline. No guarantee is implied. The value will be affected by the operating environment and operating conditions.

## Battery specifications

Item	Model
	FQ-BAT1
Battery type	Secondary lithium ion battery
Nominal capacity	1800 mAh
Rated voltage	3.7 V
Dimensions	$35.3 \times 53.1 \times 11.4 \mathrm{~mm}$
Ambient temperature range	Operating: 0 to $40^{\circ} \mathrm{C}$   Storage: -25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity range	Operating and storage: 35\% to 85\% (with no condensation)
Charging method	Charged in Touch Finder (FQ-MD31)   AC adapter (FQ-ACD) is required
Charging time*1	2.0 h
Battery backup life ${ }^{* 2}$	300 charging cycles
Weight	50 g max.

*1 This value is only a guideline. No guarantee is implied. The value will be afected by operating conditions.
2 This is a guideline for the time required for the capacity of the Battery to be reduced to $60 \%$ of the initial capacity. No guarantee is implied. The value will be affected by the operating environment and operating conditions.

## FQ-M series EtherCAT communications specifications

Item	
Communication standard	IEC 61158 Type 12
Physical layer	100BASE-TX (IEEE802.3)
Connector	M12 $\times 2$   E-CAT IN: EtherCAT (IN)   E-CAT OUT: EtherCAT (OUT)
Communications media	Use the cables for FQ-MWN $\square \square$ or FQ-WN $\square \square$ series
Communications distance	Use the communication cable within the length of FQ-MWN $\square \square$ or FQ-WN $\square \square$ series cables
Process data	Variable PDO Mapping
Mailbox (CoE)	Emergency messages, SDO requests, SDO responses and SDO information
Distributed clock	Synchronization with DC mode 1
LED display	L/A IN (Link/Activity IN) $\times 1$   L/A OUT (Link/Activity OUT) $\times 1$   RUN $\times 1$   ERR $\times 1$

## Nomenclature

## Sensor

(4)

(9)


(7)


No.	Name	Description
(1)	I/O Cable connector	An I/O Cable is used to connect the sensor   to the power supply and external I/O.
(2)	Ethernet connector	An Ethernet cable is used to connect the   sensor to external devices such as PLCs,   the Touch Finder or computers.
(3)	Lighting connector	Connect an external lighting (strobe   controller).
(4)	EtherCAT connector (IN)*	Connect an EtherCAT compatible device.
(5)	EtherCAT connector   (OUT)*	Connect an EtherCAT compatible device.


No.	Name		Description
(9)	Strobe controller connection holes		Install the strobe controller in this part. FL-TCC1 can be mounted.
(10)	Measurement process operation indicators	OR	Lit in orange while OR signal is ON.
		ETN	Lit in orange while in Ethernet communications.
		ERROR	Lit in red when an error occurs.
		BUSY	Lit in green while the sensor is processing.
(11)	EtherCAT operation indicators	L/A IN	Lit in green when Link with EtherCAT device is established and flickers in green when communicating (data IN).
		L/A OUT	Lit in green when Link with EtherCAT device is established and flickers in green when communicating (data OUT).
		ECAT RUN	Lit in green when EtherCAT communications is available.
		ECAT ERROR	Lit in red when an EtherCAT communications error occurs.

* FQ-MS $\square \square \square$-ECT and FQ-MS $\square \square \square$-M-ECT only.


## Touch Finder







No.	Name		Description
(1)	Operation   indicators	POWER	ERROR
		SD ACCESS	Lights green when the Touch Finder is   turned ON.
	CHARGE*	Lights red when an error occurs.   Flashes yellow when the SD card is being   accessed.	
(2)	LCD/touch pannel	Lights orange when the Battery is charging.   Lisplays the setting menu, measurement   results and images input by the camera	
(3)	SD card slot	An SD card can be inserted.	
(4)	Battery cover*	The Battery is inserted behind this cover.   Remove the cover when mounting or   removing the Battery.	
(5)	Power supply switch	Turns on the Touch Finder.	


No.	Name	Description
(6)	Touch pen holder	The touch pen can be stored here when it is   not being used.
(7)	Touch pen	Used to operate the touch panel.
(8)	DC power supply   connector	Used to connect a DC power supply.
(9)	Slider	Used to mount the Touch Finder to a   DIN Track.
(10)	Ethernet port	Used when connecting the Touch Finder to   the sensor with an Ethernet cable.   Insert the connector until in locks in place.
(11)	Strap holder	This is a holder for attaching the strap.
(12)	AC power supply   connector*	Use to connect the AC adapter.

* Applicable to the FQ-MD31 only.


## Dimensions

## Sensor

## FQ-MS12 $\square$-ECT/MS12 $\square-M-E C T$



MOUNTING SCREW HOLES (2)


## Touch Finder

FQ-MD30/MD31

*1. Provided with FQ-MD31 only.
*2. The dimension of the panel mounting adapter does not include that of a FQ-MD $\square \square$.

## Cables

For EtherCAT and Ethernet cable
Angle: M12 / Straight: RJ45
FQ-MWNL005/010


Straight type (M12/RJ45) FQ-WN005/010


## For EtherCAT cable

Angle type (M12/M12)
FQ-MWNEL005/010


Straight type (M12/M12) FQ-MWNE005/010

## I/O cables

Angle type
FQ-MWDL005/010


Straight type FQ-MWD005/010



## Meaning of optical chart

The $X$ axis of the optical chart shows the field of vision $(\mathrm{mm})^{* 1}$, and the $Y$ axis of the optical chart shows the camera installation distance $(\mathrm{mm}) .{ }^{* 2}$


[^17]
## Ordering information



Sensors

Symbol	Type			Model	Appearance
(1)	Color	NPN	EtherCAT communication function provided	FQ-MS120-ECT	
		PNP		FQ-MS125-ECT	
	Monochrome	NPN		FQ-MS120-M-ECT	.
		PNP		FQ-MS125-M-ECT	

## Touch Finder

Symbol	yype	Model	Appearance
	DC power supply	FQ-MD30	
	AC/DC/battery* ${ }^{* 1}$	FQ-MD31	

*1 AC Adapter and Battery are sold separately.
Bend resistant cables for FQ-M series

Symbol	Type			Model	Appearance
(3)	For EtherCAT and Ethernet cable Angle: M12/Straight: RJ45		Cable length: 5 m	FQ-MWNL005	
			Cable length: 10 m	FQ-MWNL010	
	For EtherCAT and Ethernet cable Straight type (M12/RJ45)		Cable length: 5 m	FQ-WN005-E	
			Cable length: 10 m	FQ-WN010-E	
(4)	For EtherCAT cable Angle type (M12/M12)		Cable length: 5 m	FQ-MWNEL005	
			Cable length: 10 m	FQ-MWNEL010	
	For EtherCAT cable Straight type (M12/M12)		Cable length: 5 m	FQ-MWNE005	
			Cable length: 10 m	FQ-MWNE010	
(5)	I/O Cables	Angle type	Cable length: 5 m	FQ-MWDL005	
			Cable length: 10 m	FQ-MWDL010	
		Straight type	Cable length: 5 m	FQ-MWD005	
			Cable length: 10 m	FQ-MWD010	

## Accessories for Touch Finder

Type		Model	Appearance
Panel mounting adapter		FQ-XPM	
AC adapter (for models for DC/AC/Battery)	Plug type A, 125 V max. (PSE standard)	FQ-AC1	
	Plug type A, 125 V max. (UL/CSA standard)	FQ-AC2	
	Plug type A, 250 V max. (CCC mark standard)	FQ-AC3	
	Plug type C, 250 V max.	FQ-AC4	
	Plug type BF, 250 V max.	FQ-AC5	
	Plug type O, 250 V max.	FQ-AC6	
Battery (for models for DC/AC/Battery)		FQ-BAT1	
Touch pen (enclosed with Touch Finder)		FQ-XT	
Strap		FQ-XH	
SD Card (2 GB)		HMC-SD291	$\begin{aligned} & =10 \\ & 20 \end{aligned}$

## Cameras peripheral devices

Type	Specifications	Model
Cameras peripheral devices (CCTV Lens)	Focal distance: 6 mm , Focus: F1.4~close, Diameter: 30 mm	3Z4S-LE ML-0614
	Focal distance: 8 mm , Focus: F1.3~close, Diameter: 30 mm	3Z4S-LE ML-0813
	Focal distance: 12 mm , Focus: F1.4~close, Diameter: 30 mm	3Z4S-LE ML-1214
	Focal distance: 16 mm , Focus: F1.4~close, Diameter: 30 mm	3Z4S-LE ML-1614
	Focal distance: 25 mm , Focus: F1.4~close, Diameter: 30 mm	3Z4S-LE ML-2514
	Focal distance: 35 mm , Focus: F1.9~close, Diameter: 30 mm	3Z4S-LE ML-3519
	Focal distance: 50 mm , Focus: F1.8~close, Diameter: 32 mm	3Z4S-LE ML-5018
	Focal distance: 75 mm , Focus: F2.7~close, Diameter: 32 mm	3Z4S-LE ML-7527
	Focal distance: 100 mm , Focus: F3.5~close, Diameter: 32 mm	3Z4S-LE ML-10035
Extension tube ${ }^{* 1}$	Length: 0.5 mm	3Z4S-LE ML-EXR0.5
	Length: 1 mm	3Z4S-LE ML-EXR1
	Length: 2 mm	3Z4S-LE ML-EXR2
	Length: 5 mm	3Z4S-LE ML-EXR5
	Length: 10 mm	3Z4S-LE ML-EXR10
	Length: 20 mm	3Z4S-LE ML-EXR20
	Length: 40 mm	3Z4S-LE ML-EXR40
External lightings		FL Series
Lighting controllers	For FL series	FL-TCC1

*1 To achieve 50 and 60 mm , please combine two extension tubes.

## Computer software

Specifications	Model
Sysmac Studio version 1.01 or higher	SYSMAC-SE2 $\square \square \square$

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. SysCat_Q183-E2-01A-X In the interest of product improvement, specifications are subject to change without notice.

## ZW-CE1 $\square$, ZW-S $\square \square$

## Fiber displacement sensor

The benefits of OMRON's white light confocal principle

- Small size and ultra-lightweight fiber displacement sensor
- Stable measurements for any material with same mounting position
- Robust sensor head structure
- Synchronous measurement with EtherCAT



## System configuration



## Specifications

## Sensor head specifications

Item	ZW-S07	ZW-S20	ZW-S30	ZW-S40
Measuring center distance	7 mm	20 mm	30 mm	40 mm
Measuring range	$\pm 0.3 \mathrm{~mm}$	$\pm 1 \mathrm{~mm}$	$\pm 3 \mathrm{~mm}$	$\pm 6 \mathrm{~mm}$
Static resolution* ${ }^{* 1}$	$0.25 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$	$0.25 \mu \mathrm{~m}$
Linearity ${ }^{\text {2 }}$	$\pm 0.8 \mu \mathrm{~m}$	$\pm 1.2 \mu \mathrm{~m}$	$\pm 4.5 \mu \mathrm{~m}$	$\pm 7.0 \mu \mathrm{~m}$
Spot diameter**	$20 \mu \mathrm{~m}$ dia.	$45 \mu \mathrm{~m}$ dia.	$70 \mu \mathrm{~m}$ dia.	$90 \mu \mathrm{~m}$ dia.
	$18 \mu \mathrm{~m}$ dia.	$40 \mu \mathrm{~m}$ dia.	$60 \mu \mathrm{~m}$ dia.	$80 \mu \mathrm{~m}$ dia.
	$20 \mu \mathrm{~m}$ dia.	$45 \mu \mathrm{~m}$ dia.	$70 \mu \mathrm{~m}$ dia.	$90 \mu \mathrm{~m}$ dia.
Measuring cycle	$500 \mu$ s to 10			
Operating ambient illumination	Illumination	face 10.000	candescent lig	
Ambient temperature range	Operating: 0	rage: -15 to	o icing or cond	
Ambient humidity range	Operating a	35\% to 85\%	ensation)	
Degree of protection	IP40 (IEC60			
Vibration resistance (destructive)	10 to 150 Hz	ingle amplitu	ach in $\mathrm{X}, \mathrm{Y}$ a	
Shock resistance (destructive)	$150 \mathrm{~m} / \mathrm{s}^{2} 3 \mathrm{t}$	six direction	eft/right, forw	
Temperature characteristic ${ }^{* 4}$	$0.6 \mu \mathrm{~m} /{ }^{\circ} \mathrm{C}$	$1.5 \mu \mathrm{~m} /{ }^{\circ} \mathrm{C}$	$2.8 \mu \mathrm{~m} /{ }^{\circ} \mathrm{C}$	$4.8 \mu \mathrm{~m} /{ }^{\circ} \mathrm{C}$
Materials	Case: alumi	t/Fiber cable	Calibration R	
Fiber cable length	$0.3 \mathrm{~m}, 2 \mathrm{~m}$	cable)		
Fiber cable minimum bending radius	20 mm			
Insulation resistance (calibration ROM)	Between ca	minals: 20 M	megger)	
Dielectric strength (calibration ROM)	Between ca	minals: 1000	Hz, 1 min	
Weight	Approx. 105	fiber cable to		
Accessories	Instruction s	screw (M2) fo	ROM, precau	ect use

${ }^{1}$ Capacity value when OMRON standard mirror surface target is measured at the measurement centre distance as the average of 4,096 times.
2 Material setting for the OMRON standard mirror surface target: error from an ideal straight line when measuring on mirror surface. The reference values for linearity when targets to measure other than the above are as in the below table:

Item	ZW-S07	ZW-S20	ZW-S30	ZW-S40
Grass	$\pm 1.0 \mu \mathrm{~m}$	$\pm 1.2 \mu \mathrm{~m}$	$\pm 4.5 \mu \mathrm{~m}$	$\pm 7.0 \mu \mathrm{~m}$
SUS BA	$\pm 1.2 \mu \mathrm{~m}$	$\pm 1.4 \mu \mathrm{~m}$	$\pm 5.5 \mu \mathrm{~m}$	$\pm 8.5 \mu \mathrm{~m}$
White ceramic	$\pm 1.6 \mu \mathrm{~m}$	$\pm 1.7 \mu \mathrm{~m}$	$\pm 6.4 \mu \mathrm{~m}$	$\pm 9.5 \mu \mathrm{~m}$

*3 Capacity value defined by $1 / \mathrm{e}^{2}(13.5 \%)$ of the center optical intensity in the measured area.
*4 Temperature characteristic at the measurement center distance when fastened with an aluminium jig between the sensor head and the target and the sensor head and the controller are set in the same temperature environment.

## Controller specifications



Item		ZW-CE10	[ZW-CE15 ${ }^{\text {] }}$
Main functions	Exposure time	Auto/Manual	
	Measurement cycle	$500 \mu \mathrm{~s}$ to 10 ms	
	Material setting	Standard/Mirror/Diffusion surfaces	
	Measurement item	Height/Thickness/Calculation	
	Filtering	Median/Average/Differentiation/High-pass/Low-pass/Band-pass	
	Outputs	Scaling/Different holds/Zero reset/Logging for a measured value	
	Display	Measured value/Threshold value/Analog output voltage or current value/Judgment result/Resolution/ Exposure time	
	Number of configurable banks	Up to 8 banks	
	Task process	Multi-task (up to 4 tasks per bank)	
	System	Save/Initialization/Display measurement information/Communication settings/Sensor head calibration/ Key-lock/Trigger key input	
Ratings	Power supply voltage	21.6 to 26.4 VDC (including ripple)	
	Current consumption	600 mA max.	
	Insulation resistance	Across all lead wires and controller case: $20 \mathrm{M} \Omega$ (250 VDC megger)	
	Dielectric strength	Across all lead wires and controller case: $1000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 1 \mathrm{~min}$	
Environmental	Degree of protection	IP20 (IEC60529)	
	Vibration resistance (destructive)	10 to $55 \mathrm{~Hz}, 0.35 \mathrm{~mm}$ single amplitude, 50 min each in $\mathrm{X}, \mathrm{Y}$ and Z directions	
	Shock resistance (destructive)	$150 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in six directions (up/down, left/right, forward/backward)	
	Ambient temperature	Operating: 0 to $40^{\circ} \mathrm{C}$   Storage: -15 to $60^{\circ} \mathrm{C}$ (with no icing or condensation)	
	Ambient humidity	Operating and storage: $35 \%$ to 85\% (with no condensation)	
Grounding		D-type grounding (Grounding resistance of $100 \Omega$ max.) Note: For conventional Class D grounding	
Materials		Case: PC	
Weight		Approx. 750 g (main unit only), approx. 150 g (parallel cable)	
Accessories		Instruction sheet, member registration sheet, parallel cable (ZW-XCP2E)	

Note: Controllers with binary outputs are also available (ZW-CE10T/CE15T). Please contact your OMRON sales representative for details.

## Sysmac Studio software specifications

Item	Conditions
Operating system (OS) ${ }^{* 1 \%}$	Windows XP (Service Pack3 or more, 32-bit version), Vista (32-bit version), 7 (32 or 64-bit version)
CPU	Windows PC with a Celeron 540 ( 1.8 GHz ) or faster CPU Equivalent or higher recommended Core i5 M520 (2.4 GHz)
Memory	2 GB or more
Using the 3D motion trace	Video memory: 512 MB min. One of the following video card: NVIDIAR GeForceR 200 series or ATI RaedonHD5000 series
Free hard disk space	1.6 GB or more
Display	XGA $1024 \times 76816$ million colors WXGA $1280 \times 800$ or higher recommended
Disk device	DVD-ROM drive
Communication port	USB port supports USB 2.0 or Ethernet port ${ }^{\text {3 }}$
Supported languages	Japanese, English, German, French, Italian, Spanish, simplified Chinese, traditional Chinese, Korean

${ }^{* 1}$ Sysmac Studio operating system precaution: System requirements and hard disk space may vary with the system environment
*2 The following restrictions apply when Sysmac Studio is used with Microsoft Windows Vista / 7:
The help files can be accessed if the help program distributed by Microsoft for Windows (WinHlp32.exe) is installed. Refer to the Microsoft homepage listed below or contact Microsoft for details on installing the file. (The download page is automatically displayed if the help files are opened while the user is connected to the Internet.) http://support.microsoft.com/kb/917607/en-us
*3 Refer to the hardware manual for your controller for hardware connection methods and cables to connect the computer and controller.

## EtherCAT communication specifications

Item	Specifications
Communication standards	IEC61158 Type12
Physical layer	$100 B A S E-$ TX (IEEE802.3)
Connector	RJ45 $\times 2$, EtherCAT IN: EtherCAT input, EtherCAT OUT: EtherCAT output
Communication system	Category 5 or higher (cable with double, aluminium type and braided shielding) is recommended
Max. communication distance value	Distance between nodes: within 100 m
Process data	Variable PDO mapping
Mailbox (CoE)	Emergency messages, SDO requests, SDO responses, SDO information
Distributed clock	Synchronization in DC mode
LED display	L/A IN (Link Activity IN) $\times 1$, L/A OUT (Link Activity OUT) $\times 1$, AECAT RUN $\times 1$, AECAT ERR $\times 1$

## Dimensions

## Sensor head

ZW-S07/S20/S30/S40


Mounting hole dimensions

Model	L	M	X
ZW-S07	7	0.3	12
ZW-S20	20	1	11.8
ZW-S30	30	3	11.7
ZW-S40	40	6	11.7



## Controller

ZW-CE10 $\square / C E 15 \square$


## Extension fiber cable

ZW-XF02R/XF05R/XF10R/XF20R/XF30R


## Characteristic data

Linearity characteristic by materials


ZW-S07

## Material setting: Normal



ZW-S20


ZW-S30

## Material setting: Normal



ZW-S40

Material setting: Mirror surface


Material setting: Mirror surface


Material setting: Mirror surface


Material setting: Mirror surface


Material setting: Diffusion surface


Material setting: Diffusion surface


Material setting: Diffusion surface


Material setting: Diffusion surface


## OmROn

## Angle characteristic*



ZW-S07



ZW-S20




White ceramic $\beta$ direction


ZW-S30


Mirror $\beta$ direction



White ceramic $\beta$ direction


ZW-S40




White ceramic $\beta$ direction


## Ordering information



Sensor head

Symbol	Measuring range	Spot diameter	Static resolution	Model
(1)	$7 \pm 0.3 \mathrm{~mm}$	$18 \mu \mathrm{~m}$ dia.	$0.01 \mu \mathrm{~m}{ }^{\text {-1 }} / 0.25 \mu \mathrm{~m}$	ZW-S07
	$20 \pm 1 \mathrm{~mm}$	$40 \mu \mathrm{~m}$ dia.	$0.02 \mu \mathrm{~m}{ }^{\text {1 }} / 0.25 \mu \mathrm{~m}$	ZW-S20
	$30 \pm 3 \mathrm{~mm}$	$60 \mu \mathrm{~m}$ dia.	$0.06 \mu \mathrm{~m}{ }^{1 /} / 0.25 \mu \mathrm{~m}$	ZW-S30
	$40 \pm 6 \mathrm{~mm}$	$80 \mu \mathrm{~m}$ dia.	$0.08 \mu \mathrm{~m}{ }^{\text {¹ }} / 0.25 \mu \mathrm{~m}$	ZW-S40

*1 The high resolution types are subject to the export control restrictions.
Note: When ordering, specify the cable length ( $0.3 \mathrm{~m}, 2.0 \mathrm{~m}$ ).
Controller

Symbol	Power supply voltage	Output type	Model	Appearance
(2)	24 VDC	NPN	ZW-CE10 ${ }^{11}$	
			ZW-CE10T	
		PNP	ZW-CE15 ${ }^{1}$	
			ZW-CE15T	

*1 The high resolution types are subject to the export control restrictions.
Note: Controller with binary outputs are also available (ZW-CE10T/CE15T).
Cables

Symbol	Item	Cable length	Model	Appearance
(3)	Sensor head to Controller Extension fiber cable (flexible cable) (fiber adapter ZW-XFC provided)	2 m	ZW-XF02R	
		5 m	ZW-XF05R	
		10 m	ZW-XF10R	
		20 m	ZW-XF20R	
		30 m	ZW-XF30R	
	Fiber adapter (between sensor head pre-wired cable and extension fiber cable)	-	ZW-XFC	
	Parallel cable for ZW-CE1DT 32-pole ${ }^{11}$ (included with controller ZW-CE1 $\square$ T)	2 m	ZW-XCP2E	
	RS-232C cable for personal computer	2 m	ZW-XRS2	
	RS-232C cable for PLC/programmable terminal	2 m	ZW-XPT2	

[^18]
## Accessories

Item	Model
Fiber connector cleaner	ZW-XCL
Note: Place orders in units of boxes (contacting 10 units).	
Setting software	Model
Item	ZW-SW101
Smart monitor ZW	
Computer software	Model
Item	SYSMAC-SE2 $\square \square \square$
Sysmac Studio version 1.05 or higher	

## E3NW- $\square$, E3NX- $\square$, E3NC- $\square$

## N-Smart series sensor

Easily connect fiber sensors and laser sensors to EtherCAT

- E3NX-FA fiber sensors: High performance fiber amplifier with increased dynamic range, resolution and sensing distance
- E3NC-L compact laser sensors: 2 types of head are available for long distance and variable spot type and minute spot type
- E3NC-S ultra-compact CMOS laser sensors: Stable detection from to glossy workpieces to black rubber with the industry's smallest body



## System configuration



Specifications
Sensor communication unit and distributed sensor unit specifications

Item	Specifications	
Model	E3NW-ECT	E3NW-DS
Connectable sensor amplifier units	N-Smart   Smart fiber amplifier unit: E3NX-FA0   Smart laser amplifier unit: E3NC-LA0   Smart laser amplifier unit (CMOS type): E3NC-SAO	
Power supply voltage	24 VDC (20.4 to 26.4 V )	
Power and current consumption	2.4 W max./100 mA max. (not including the power supplied to sensors)	2 W max./80 mA max. (not including the power supplied to sensors)
Indicators	L/A IN indicator (green), L/A OUT indicator (green), PWR indicator (green), RUN indicator (green), ERROR indicator (red) and SS (sensor status) indicator (green/red)	RUN indicator (green) and SS (sensor status) indicator (green/red)
Vibration resistance (destruction)	10 to 60 Hz with a 0.7 mm double amplitude, $50 \mathrm{~m} / \mathrm{s}^{2}$ at 60 to 150 Hz , for 1.5 hours each in $\mathrm{X}, \mathrm{Y}$ and Z directions	
Shock resistance (destruction)	$150 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$ and Z directions	
Ambient temperature range	Operating: 0 to $55^{\circ} \mathrm{C}^{* 1}$, Storage: -30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity range	Operating and storage: $25 \%$ to $85 \%$ (with no condensation)	
Maximum connectable sensors	$30^{2}$	10
Maximum connectable distributed sensor units	8	-
Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC )	
Dielectric strength	500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute	
Mounting method	$35-\mathrm{mm}$ DIN track - mounting	
Weight (packed state/unit only)	Approx. $185 \mathrm{~g} / \mathrm{approx} .95 \mathrm{~g}$	Approx. $160 \mathrm{~g} /$ approx. 40 g
Materials	Polycarbonate	
Accessories	Power supply connector, communication connectors, connector cover, DIN track end plates and instruction manuals	Power supply/communication connectors, connector cover, DIN track end plates, ferrite core and instruction manuals

* 1 Temperature limitations based on number of connected amplifier units: groups of 1 or 2 amplifier units: 0 to $55^{\circ} \mathrm{C}$, groups of 3 to 10 amplifier units: 0 to $50^{\circ} \mathrm{C}$, groups of 11 to 16 amplifier units: 0 to $45^{\circ} \mathrm{C}$, groups of 17 to 30 amplifier units: 0 to $40^{\circ} \mathrm{C}$.
*2 You can connect up to 30 sensors total to the sensor communication units and distributed sensor units.
Fiber sensor unit specifications

${ }^{* 1}$ At power supply voltage of 10 to 30 VDC: Normal mode: 1.080 mW max. (current consumption: 36 mA max. at $30 \mathrm{VDC}, 108 \mathrm{~mA}$ max. at 10 VDC ). Power saving eco mode: 930 mW max. (current consumption: 31 mA max. at 30 VDC, 93 mA max. at 10 VDC ).
*2 The mutual interference prevention function is disabled if the detection mode is set to super-high-speed mode.


## Laser sensor unit specifications

Item		Specifications	
Model		E3NC-LAO	E3NC-SAO
Outputs		2 outputs	2 outputs
Power supply voltage		10 to 30 VDC, including 10\% ripple (p-p)	
Power consumption*		At power supply voltage of 24 VDC   Normal mode: 1.560 mW max. (current consumption:   65 mA max.)   Power saving eco mode: 1.200 mW max. (current consumption: 50 mA max.)	At power supply voltage of 24 VDC   Normal mode: 1.920 mW max. (current consumption:   80 mA max.)   Power saving eco mode: 1.680 mW max. (current consumption: 70 mA max.)
Protection circuits		Power supply reverse polarity protection and output short-circuit protection	
Response time	Super-high speed mode (SHS) ${ }^{2}$	Operate or reset: $80 \mu \mathrm{~s}$	Operate or reset: 1.5 ms
	High-speed mode (HS)	Operate or reset: $250 \mu \mathrm{~s}$	Operate or reset: 5 ms
	Standard mode (Stnd)	Operate or reset: 1 ms	Operate or reset: 10 ms
	Giga-power mode (GIGA)	Operate or reset: 16 ms	Operate or reset: 50 ms
Sensitivity adjustment		Smart tuning (2-points tuning, full auto tuning, position tuning, maximum sensitivity tuning, power tuning or percentage tuning ( $-99 \%$ to $+99 \%$ )), or manual adjustment.	Smart tuning (2-points tuning, full auto tuning, 1-point tuning, tuning without workpiece, 2-point area tuning, 1-point area tuning or area tuning without workpiece), or manual adjustment.
No. of unit for mutual interference prevention	Super-high speed mode (SHS) ${ }^{2}$	${ }^{2} 0$	0
	High-speed mode (HS)	2	2
	Standard mode (Stnd)	2	2
	Giga-power mode (GIGA)	4	2
Functions		Dynamic power control (DPC), timer, zero reset, resetting settings, eco mode, bank switching (select from banks 1 to 4), power tuning, output 1, output 2 , external input and hysteresis width.	Timer, zero reset, resetting settings, eco mode, bank switching (select from banks 1 to 4), power tuning, output 1, output 2, external input, keep function ${ }^{* 3}$, background suppression ${ }^{* 4}$ and hysteresis width.
Maximum co	nnectable units	30	
Ambient temperature range		Operating: groups of 1 or 2 amplifier units: 0 to $55^{\circ} \mathrm{C}$, groups of 3 to 10 amplifier units: 0 to $50^{\circ} \mathrm{C}$, groups of 11 to 16 amplifier units: 0 to $45^{\circ} \mathrm{C}$, groups of 17 to 30 amplifier units: 0 to $40^{\circ} \mathrm{C}$ Storage: -30 to $70{ }^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity range		Operating and storage: $35 \%$ to $85 \%$ (with no condensation)	
Vibration resistance (destruction)		10 to 55 Hz with a 1.5 mm double amplitude for 2 hours each in $\mathrm{X}, \mathrm{Y}$ and Z directions	
Shock resistance (destruction)		$150 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$ and Z directions	
Weight (packed state/amplifier unit only)		Approx. $65 \mathrm{~g} / \mathrm{approx} .25 \mathrm{~g}$	
Materials		Case: Polycarbonate (PC). Cover: Polycarbonate (PC). Cable: PVC	
Accessories		Instruction manual	

*1 At power supply voltage of 10 to 30 VDC: Normal mode: 1.650 mW max. (current consumption: 55 mA max. at 30 VDC, 115 mA max. at 10 VDC). Power saving eco mode: 1350 mW max. (current consumption: 45 mA max. at $30 \mathrm{VDC}, 80 \mathrm{~mA}$ max. at 10 VDC ).
*2 The mutual interference prevention function is disabled if the detection mode is set to super-high-speed mode.
*3 The output for a measurement error is set. ON: The value of the output from before the measurement error is retained. OFF: The output is turned OFF when a measurement error occurs.
*4 Only the sensing object is detected when tuning.

## E3NC-LA0 sensor head

Item		Specifications	
Model		E3NC-LH02	E3NC-LH01
Light source (wavelength) ${ }^{11}$		Visible semiconductor laser diode ( 660 nm ), $315 \mu \mathrm{~W}$ max. (JIS class 1, IEC/EN class 1 and FDA class 1)	
Sensing distance*2	Super-high speed mode (SHS)	200 mm	$70 \pm 15 \mathrm{~mm}$
	High-speed mode (HS)	250 mm	
	Standard mode (Stnd)	750 mm	
	Giga-power mode (GIGA)	1200 mm	
Spot diameter ${ }^{\text {³ }}$		Approx. 0.8 mm (at distances up to 300 mm )	Approx. 0.1 mm (at distances up to 70 mm )
Differential distance ${ }^{4}$		10\% of sensing distance	
Ambient illumination		Illumination on received light surface: 10,000 lx max. of incandescent light, 20,000 lx max. of sunlight	
Ambient temperature range		Operating: -10 to $55^{\circ} \mathrm{C}$; Storage: -25 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity range		Operating and storage: $35 \%$ to $85 \%$ (with no condensation)	
Vibration resistance (destruction)		10 to 55 Hz with a 1.5 mm double amplitude or $100 \mathrm{~m} / \mathrm{s}^{2}$ for 2 hours each in $X, Y$ and $Z$ directions	
Shock resistance (destruction)		$500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$ and Z directions	
Degree of protection		IEC IP65	
Connecting method		Pre-wired connector (standard cable length: 2 m )	
Weight (packed state/sensor head only)		Approx. $115 \mathrm{~g} / \mathrm{approx} .65 \mathrm{~g}$	
Materials		Case: Polybutylene terephthalate (PBT). Lens: Methacrylic resin. Cable: PVC	
Accessories		Instruction manual	

*1 These sensors are classified as class 1 laser devices under IEC 60825-1 and the regulations of Laser Notice No. 50 for FDA certification. CDRH (Center for Devices and Radiological Health) registration has been completed (Accession Number: 1220690).
*2 The values were measured using the OMRON standard sensing object (white paper).
${ }^{* 3}$ Defined as $1 / \mathrm{e}^{2}(13.5 \%)$ of the central light intensity at the measurement distance. The spot diameter is sometimes influenced by the ambient conditions of the workpiece, such as light that leaks from the main beam, if the reflection factor of the area surrounding the workpiece is higher than that of the workpiece.
*4 Measured at the rated sensing distance.

E3NC-SAO sensor head

Item	Specifications	
Model	E3NC-SH250	E3NC-SH100
Light source (wavelength)* ${ }^{*}$	Visible semiconductor laser diode ( 660 nm ), $100 \mu \mathrm{~W}$ max. (JIS class 1, IEC/EN class 1 and FDA class 1)	
Measurement range	35 to 250 mm (display value: 350 to 2,500 )	35 to 100 mm (display value: 350 to 1,000 )
Standard detected level difference*2	35 to $180 \mathrm{~mm}: 9 \mathrm{~mm}$ 180 to $250 \mathrm{~mm}: 25 \mathrm{~mm}$	35 to $50 \mathrm{~mm}: 1.5 \mathrm{~mm}$ 50 to $100 \mathrm{~mm}: 3 \mathrm{~mm}$
Spot diameter ${ }^{* 3}$	Approx. 1 mm (at 250 mm )	Approx. 0.5 mm (at 100 mm )
Ambient illumination	Illumination on received light surface: $2,000 \mathrm{Ix}$ max. of incandescent light, $4,000 \mathrm{~lx}$ max. of sunlight	Illumination on received light surface: 4,000 Ix max. of incandescent light, $8,000 \mathrm{Ix}$ max. of sunlight
Ambient temperature range	Operating: -10 to $55^{\circ} \mathrm{C}$; Storage: -25 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient humidity range	Operating and storage: $35 \%$ to 85\% (with no condensation)	
Vibration resistance (destruction)	10 to 55 Hz with a 1.5 mm double amplitude or $100 \mathrm{~m} / \mathrm{s}^{2}$ for 2 hours each in $\mathrm{X}, \mathrm{Y}$ and Z directions	
Shock resistance (destruction)	$500 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $\mathrm{X}, \mathrm{Y}$ and Z directions	
Degree of protection	IEC IP67	
Connecting method	Pre-wired connector (standard cable length: 2 m )	
Weight (packed state/sensor head only)	Approx. $125 \mathrm{~g} / \mathrm{approx} .75 \mathrm{~g}$	
Accessories	Instruction manual	

*1 These sensors are classified as class 1 laser devices under IEC 60825-1 and the regulations of Laser Notice No. 50 for FDA certification. CDRH (Center for Devices and Radiological Health) registration has been completed (Accession Number: 1220691),
2 The values were measured at the center of the sensing distance using OMRON's standard sensing object (white ceramic)
${ }^{* 3}$ Spot diameter: Defined as $1 / \mathrm{e}^{2}(13.5 \%$ ) of the minimum diameter (actual value) in the measurement range. False detections can occur if there is light leakage outside the defined region and the surroundings of the target object have a high reflectance in comparison to the target object. Also, correct measurement values may not be obtained if the workpiece is smaller than the spot diameter.
Note: Incorrect detection may occur outside the measurement range if the object has a high reflection factor.

## EtherCAT communication specifications

Item	Specifications
Communication protocol	Dedicated protocol for EtherCAT
Modulation	Base band
Baud rate	100 Mbps
Physical layer	100BASE-TX (IEEE 802.3u)
Topology	Daisy chain
Communication media	STP category 5 or higher
Communication distance	Distance between nodes: 100 m max.
Noise resistance	Conforms to IEC 61000-4-4, 1 kV or higher
Node address setting method	Set with decimal rotary switches or software ${ }^{-1}$
Node address range	000 to $192^{2}$

"1 The software setting is used when the node address setting switches are set to 0
"2 The range depends on the EtherCAT master that is used. Refer to the "E3NW-ECT EtherCAT sensor communication unit operation manual" for details

## Dimensions

## Sensor communication unit

## E3NW-ECT



## Distributed sensor unit

## E3NW-DS



## Fiber sensor unit

E3NX-FAO


## Laser sensor unit

## E3NC-LAO / E3NC-SAO



E3NC-LAO sensor head

## E3NC-LH2



## E3NC-LH1



E3NC-SA0 sensor head

## E3NC-SH250/E3NC-SH100



## Ordering information

## Communication units

Type	Model	Appearance
Sensor communication unit for EtherCAT	E3NW-ECT	
Sensor dispersion (slave) unit	E3NW-DS	

## Connectable sensor units

Type	Inputs/Outputs	Model	Appearance
Fiber amplifier unit	2 outputs		
Smart laser amplifier unit			
Smart laser amplifier unit (CMOS type)			

## Sensor head units

E3NC-LAO sensor head units

Sensing method	Focus	Model	Appearance
Diffuse-reflective	Variable spot	E3NC-LHO2 2M	
Limited-reflective	Spot	E3NC-LH01 2M	

E3NC-SA0 sensor head units

Sensing distance	Model	Appearance
35 to 250 mm	E3NC-SH250 2M	
35 to 100 mm	E3NC-SH100 2M	

## Mounting brackets

Contents	Applicable sensor head	Model	Appearance
Mounting bracket: 1   Nut plate: 1   Philips screws (M3×18): 2	E3NC-LH02	E39-L185	
	E3NC-LH01	E39-L186	
	E3NC-SH250	E39-L187	

## Computer software

Specifications	Model
Sysmac Studio version 1.05 or higher	SYSMAC-SE2 $\square \square \square$

[^19]Cat. No. SysCat_E97E-EN-01 In the interest of product improvement, specifications are subject to change without notice.

## E3X- $\square, ~ E 3 C-L D A 0, ~ E 2 C-E D A 0$

## E3X/E3C/E2C series sensor

Easily connect fiber sensors, laser photoelectric sensors and proximity sensors to EtherCAT

- Most easy set up and operation by smart tuning and integration into Sysmac Studio
- Ultra high-speed communication of sensor output
- Sensor functions such as reading present values, changing settings and tuning are controlled by EtherCAT
- Up to 30 amplifiers can be connected


## System configuration



## Specifications

EtherCAT communication unit specifications

Item	Specifications
Model	E3X-ECT
Power supply voltage	20.4 to 26.4 VDC
Power consumption	2.4 W max. (not include sensors current)   100 mA max. at 24 VDC (not include sensors current)
Indicators	$\mathrm{L} / \mathrm{A} \mathrm{IN}$ (yellow), L/A OUT (yellow), PWR (green), RUN (green), ERROR (red), SS (sensor status) (green/red)
Vibration resistance	10 to 150 Hz with double-amplitude of 0.7 mm or $50 \mathrm{~m} / \mathrm{s}^{2}$ for 80 minutes each in X, Y and Z directions
Shock resistance	$150 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in 3 directions
Dielectric strength	500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute
Insulation resistance	$20 \mathrm{M} \Omega$ min.
Ambient operating temperature	0 to $55^{\circ} \mathrm{C}$
Ambient operating humidity	$25 \%$ to $85 \%$ (with no condensation)
Storage temperature	-30 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)
Storage humidity	$25 \%$ to $85 \%$ (with no condensation)
Installation	Mounted on 35 mm DIN track
Accessories	Power supply connector, connector cover, DIN track end plates and instruction manual
Weight (packed state)	Approx. 220 g

## Fiber amplifier unit specifications

Item		Specifications		
Model		E3X-HD0	E3X-MDA0	E3X-DA0-S
Connection me		Connector for sensor communication unit		
Light source (wavelength)		Red, 4-element LED (625 nm)	Red LED (635 nm)	Red, 4-element LED (625 nm)
Power supply voltage		12 to 24 VDC, $\pm 10 \%$, ripple (P-P) 10\% max		
Power consumption		( 30 mA max. at $24 \mathrm{VDC}, 60 \mathrm{~mA}$ max. at 12 VDC)   Power saving eco: 530 mW max. ( 22 mA max. at $24 \mathrm{VDC}, 44 \mathrm{~mA}$ max. at 12 VDC )	1,080 mW max.   ( 45 mA max. at power supply voltage of 24 VDC )	Normal mode: 960 mW max. ( 40 mA max. at $24 \mathrm{VDC}, 80 \mathrm{~mA}$ max. at 12 VDC)   Power saving ECO1: 720 mW max. ( 30 mA max. at $24 \mathrm{VDC}, 60 \mathrm{~mA}$ max. at 12 VDC$)$   Power saving ECO2: 600 mW max. ( 25 mA max. at $24 \mathrm{VDC}, 50 \mathrm{~mA}$ max. at 12 VDC)
Protection circuits		Power supply reverse polarity protection and output short-circuit protection	Power supply reverse polarity protection and output short-circuit protection	Power supply reverse polarity protection, output short-circuit protection and output reverse polarity protection
Response time	High-speed mode	Operate or reset: $250 \mu \mathrm{~s}$	Operate or reset: $450 \mu \mathrm{~s}$	Operate or reset: $250 \mu \mathrm{~s}$
	Standard mode	Operate or reset: 1 ms	Operate or reset: 1 ms	Operate or reset: 1 ms
	Giga-power mode	Operate or reset: 16 ms	Operate or reset: 4 ms	-
	High-resolution mode	-	-	Operate or reset: 4 ms
	Tough mode	-	-	Operate or reset: 16 ms
Mutual interference prevention		Possible for up to 10 units (optical communications sync)	Possible for up to 9 units (18 channels)	Possible for up to 10 units
Auto power control (APC)		Always ON		
Other functions		Power tuning, differential detection, DPC, timer (OFF-delay, ON-delay or one-shot), zero reset, resetting settings and Eco mode	Power tuning, timer (OFF-delay, ON-delay or one-shot), zero reset, resetting settings, Eco mode and output setting	Power tuning, differential detection, timer (OFF-delay, ON-delay or ON-delay + OFF-delay timer), zero reset, resetting settings, Eco mode and output setting
Ambient illumination (receiver side)		Incandescent lamp: 20,000 lux max., Sunlight: 30,000 lux max.	Incandescent lamp: 10,000 lux max., Sunlight: 20,000 lux max.	Incandescent lamp: 10,000 lux max., Sunlight: 20,000 lux max.
Connectable units		30 units max. (with E3X-ECT)		
Ambient temperature range		Operating:   Groups of 1 to 2 amplifiers: 0 to $55{ }^{\circ} \mathrm{C}$   Groups of 3 to 10 amplifiers: 0 to $50^{\circ} \mathrm{C}$   Groups of 11 to 16 amplifiers: 0 to $45{ }^{\circ} \mathrm{C}$   Groups of 17 to 30 amplifiers: 0 to $40{ }^{\circ} \mathrm{C}$   Storage: -30 to $70^{\circ} \mathrm{C}$ (with no icing condensation)		
Ambient humidity range		Operating and storage: $35 \%$ to $85 \%$ (with no condensation)		
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC )		
Dielectric strength		$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 minute		
Vibration resistance		Destruction: 10 to 150 Hz with 0.7 mm double amplitude for 80 minutes each in $\mathrm{X}, \mathrm{Y}$ and Z directions		
Shock resistance		Destruction: $150 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in $\mathrm{X}, \mathrm{Y}$ and Z directions		
Degree of protection		IEC 60529 IP50 (with protective cover attached)		
Weight (packed state)		Approx. 65 g	Approx. 55 g	Approx. 55 g
Materials	Case	Heat-resistant ABS	Polybutylene terephthalate (PBT)	Polybutylene terephthalate (PBT)
	Cover	Polycarbonate (PC)		
Accessories		Instruction manual		

## Laser photoelectric amplifier unit specifications

Item		Specifications
Model		E3C-LDA0
Connection method		Connector for sensor communication unit
Power supply voltage		12 to 24 VDC, $\pm 10 \%$, ripple (P-P) 10\% max
Power consumption		$1,080 \mathrm{~mW}$ max. ( 45 mA max. at power supply voltage of 24 VDC )
Protection circuits		Power supply reverse polarity protection and output short-circuit protection
Response time	High-speed mode	Operate or reset: $250 \mu \mathrm{~s}$
	Standard mode	Operate or reset: 1 ms
	High-resolution mode	Operate or reset: 4 ms
Mutual interference prevention		Possible for up to 10 units
Auto power control (APC)		Always ON
Other functions		Differential detection, timer (OFF-delay, ON-delay or one-shot), zero reset, resetting settings, counter and output setting
Connectable units		30 units max. (with E3X-ECT)
Ambient temperature range		Operating:   Groups of 1 to 2 amplifiers: 0 to $55^{\circ} \mathrm{C}$   Groups of 3 to 10 amplifiers: 0 to $50^{\circ} \mathrm{C}$   Groups of 11 to 16 amplifiers: 0 to $45^{\circ} \mathrm{C}$   Groups of 17 to 30 amplifiers: 0 to $40^{\circ} \mathrm{C}$   Storage: -30 to $70^{\circ} \mathrm{C}$ (with no icing condensation)
Ambient humidity range		Operating and storage: $35 \%$ to 85\% (with no condensation)
Insulation resistance		$20 \mathrm{M} \Omega$ min. (at 500 VDC )
Dielectric strength		$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 minute
Vibration resistance		Destruction: 10 to 150 Hz with 0.7 mm double amplitude for 80 minutes each in $\mathrm{X}, \mathrm{Y}$ and Z directions
Shock resistance		Destruction: $150 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in $\mathrm{X}, \mathrm{Y}$ and Z directions
Degree of protection		IEC 60529 IP50 (with protective cover attached)
Weight (packed state)		Approx. 55 g
Materials	Case	Polybutylene terephthalate (PBT)
	Cover	Polycarbonate (PC)
Accessories		Instruction manual

Proximity amplifier unit specifications

Item		Specifications
Model		E2C-EDA0
Connection method		Connector for sensor communication unit
Power supply voltage		12 to 24 VDC, $\pm 10 \%$, ripple (P-P) 10\% max
Power consumption		1,080 mW max. (45 mA max. at power supply voltage of 24 VDC )
Protection circuits		Power supply reverse polarity protection and output short-circuit protection
Response time	High-speed mode	Operate or reset: $300 \mu \mathrm{~s}$
	Standard mode	Operate or reset: 1 ms
	High-resolution mode	Operate or reset: 4 ms
Mutual interference prevention		Possible for up to 5 units
Other functions		Differential detection, timer (OFF-delay, ON-delay or one-shot), zero reset, resetting settings, hysteresis settings and output setting
Connectable units		30 units max. (with E3X-ECT)
Ambient temperature range		Operating:   Groups of 1 to 2 amplifiers: 0 to $55^{\circ} \mathrm{C}$   Groups of 3 to 5 amplifiers: 0 to $50^{\circ} \mathrm{C}$   Groups of 6 to 16 amplifiers: 0 to $45^{\circ} \mathrm{C}$   Groups of 17 to 30 amplifiers: 0 to $40^{\circ} \mathrm{C}$   When used in combination with an E2C-EDR6-F:   Groups of 3 to 4 amplifiers: 0 to $50^{\circ} \mathrm{C}$   Groups of 5 to 8 amplifiers: 0 to $45^{\circ} \mathrm{C}$   Groups of 9 to 16 amplifiers: 0 to $40^{\circ} \mathrm{C}$   Groups of 17 to 30 amplifiers: 0 to $35^{\circ} \mathrm{C}$   Storage: -30 to $70^{\circ} \mathrm{C}$ (with no icing condensation)
Ambient humidity range		Operating and storage: $35 \%$ to $85 \%$ (with no condensation)
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC )
Dielectric strength		$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 minute
Vibration resistance		Destruction: 10 to 150 Hz with 0.7 mm double amplitude for 80 minutes each in $\mathrm{X}, \mathrm{Y}$ and Z directions
Shock resistance		Destruction: $150 \mathrm{~m} / \mathrm{s}^{2}$, for 3 times each in $\mathrm{X}, \mathrm{Y}$ and Z directions
Degree of protection		IEC 60529 IP50 (with protective cover attached)
Weight (packed state)		Approx. 55 g
Materials	Case	Polybutylene terephthalate (PBT)
	Cover	Polycarbonate (PC)
Accessories		Instruction manual

## EtherCAT communication specifications

Item	Specifications
Communication protocol	Dedicated protocol for EtherCAT
Modulation	Base band
Baud rate	100 Mbps
Physical layer	100BASE-TX (IEEE802.3)
Connectors	RJ45 shielded connector $\times$ 2/CN IN: EtherCAT input/CN OUT: EtherCAT output
Topology	Daisy chain
Communication media	Category 5 or higher (cable with double, aluminium tape and braided shielding is recommended)
Communication distance	Distance between nodes (slaves): 100 m max.
Noise resistance	Conforms to IEC 61000-4-4, 1 kV or higher
Node address setting method	Set with decimal rotary switch or Sysmac Studio
Node address range	1 to 999: set with rotary switch/1 to 65,535: set with Sysmac Studio
LED display	PWR $\times 1 /$ L/A IN (Link/Activity IN) $\times 1 /$ L/A OUT (Link/Activity OUT) $\times 1 / R U N \times 1 / E R R \times 1$
Process data	Variable PDO mapping
PDO size/node	36 byte max.
Mailbox	Emergency messages, SDO requests, SDO responses and SDO information
Synchronization mode	Free run mode or DC mode 1

## Dimensions

EtherCAT communication unit

## E3X-ECT



## Fiber amplifier unit

E3X-HDO


DIN track mounting


## E3X-MDAO



E3X-DAO-S


## Laser photoelectric/Proximity amplifier unit

E3C-LDA0 / E2C-EDAO


## Ordering information

## EtherCAT communication unit

Type	Power supply voltage	Power supply	Model
EtherCAT communication unit	24 VDC	Supplied from the connector	E3X-ECT

Note: Please read and understand the important precautions and reminders described on the manuals (E413) of E3X-ECT, before attempting to start operation.

## Connectable amplifiers

Type	Connection method	Power supply	Model
Standard fiber amplifier unit	Connect to a communication unit and amplifier units by connectors	Supplied from the connector through the communication unit	E3X-HDO ${ }^{1}$
Two-channel fiber amplifier unit			E3X-MDA0* ${ }^{1}$
High-functionality fiber amplifier unit			E3X-DA0-S ${ }^{11}$
Laser photoelectric amplifier unit			E3C-LDA0 ${ }^{2}$
Proximity amplifier unit			E2C-EDA0 ${ }^{3}$

*1. These fiber amplifier units should be connected to a fiber unit (E32 series). For details on the sensors that you can connect, refer to product information on your OMRON website.
*2. This laser photoelectric amplifier unit should be connected to a laser photoelectric sensor head unit (E3C-LD series). For details on the sensors that you can connect, refer to product information on your OMRON website.
*3. This proximity amplifier unit should be connected to a proximity sensor head unit (E2C-ED series). For details on the sensors that you can connect, refer to product information on your OMRON website.
Note: Please read and understand the important precautions and reminders described on the instruction sheet bundled to the product, before attempting to start operation.

## EtherCAT communication cables

Refer to "Recommended EtherCAT and EtherNet/IP communication cables" in the NJ-Series controller section for the recommended cables.

## Computer software

Specifications	Model
Sysmac Studio version 1.02 or higher	SYSMAC-SE2 $\square \square \square$

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
Cat. No. SysCat_E417-E2-02 In the interest of product improvement, specifications are subject to change without notice.

## SYSMAC-SE2 $\square$

## Sysmac Studio

## Sysmac Studio for machine creators

The Sysmac Studio provides one design and operation environment for configuration, programming, simulation and monitoring.

- One software for safety, drives, vision and I/O
- Fully compliant with open standard IEC 61131-3
- Supports Ladder, Structured text and In-Line ST programming with a rich instruction set
- CAM editor for easy programming of complex motion profiles
- One simulation tool for sequence and motion in a 3D environment
- Advanced security function with 32 digit security password



## Sysmac Studio <br> Version 1.0

© Copyright OMRON Corporation 2011 All Rights Reserved.
This program is protected by U.S. and international copyright laws as described in the About box

## System requirements

Item	Requirement
Operating system (OS) ${ }^{* 1 * 2}$	Windows XP (Service Pack 3 or higher, 32-bit version) / Vista (32-bit version) / 7 (32-bit/64 bit version) / 8 (32-bit/64-bit version)
CPU	Windows computers with Celeron 540 ( 1.8 GHz ) or faster CPU Core i5 M520 (2.4 GHz) or equivalent or faster recommended
Main memory ${ }^{* 3}$	2 GB min. 4 GB min. recommended
Recommended video memory / video card for using 3D motion trace	Video memory: 512 MB min.   Video card: Either of the following video cards:   - NVIDIA ${ }^{\circledR}$ GeForce ${ }^{\circledR} 200$ series or higher   - ATI RadeonHD5000 series or higher
Hard disk	At least 1.6 GB of available space
Display	XGA $1024 \times 768$, 16 million colors WXGA $1280 \times 800 \mathrm{~min}$. recommended
Disk drive	DVD-ROM drive
Communication ports	USB port corresponded to USB 2.0 or Ethernet port ${ }^{*} 4$
Supported languages ${ }^{* 5}$	Japanese, English, German, French, Italian, Spanish, simplified Chinese, traditional Chinese, Korean

${ }^{* 1}$ Sysmac Studio operating system precaution: System requirements and hard disk space may vary with the system environment.
*2 The following restrictions apply when Sysmac Studio is used with Microsoft Windows Vista, Windows 7 or Windows 8.

1) Some Help files cannot be accessed.

The Help files can be accessed if the Help program distributed by Microsoft for Windows (WinHlp32.exe) is installed. Refer to the Microsoft homepage listed below or contact Microsoft for details on installing the file. (The download page is automatically displayed if the Help files are opened while the user is connected to the Internet.) http://support.microsoft.com/kb/917607/en-us
2) The following restrictions apply to some application operations:

Application	Restriction
CX-Designer	If a new Windows Vista, Windows 7 or Windows 8 font (e.g., Meiryo) is used in a project, the font size on labels may be bigger and   protrude from the components if the project is transferred from CX-Designer running on a Windows XP or earlier OS to the NS/NSJ.
CX-Integrator/Network Configurator	Although you can install CPS files, EDS files, Expansion Modules and Interface Modules, the virtual store function of Windows Vista,   Windows 7 or Windows 8 imposes the following restrictions on the use of the software after installation.   Q If another user logs in, the applications data will need to be installed again.   (The CPS filis will not be automatically updated.   These restrictions will not exist if application data is installed using Run as Administrator.

*3 The amount of memory required varies with the Support Software used in Sysmac Studio for the following Support Software. Refer to user documentation for individual Support Software for details. CX-Designer, CX-Protocol and Network Configurator.
*4 Refer to the hardware manual for your CPU unit for hardware connection methods and cables to connect the computer and CPU unit.
${ }^{5}$ Supported only by the Sysmac Studio version 1.01 or higher about German, French, Italian and Spanish. Supported only by the Sysmac Studio version 1.02 or higher about simplified Chinese, traditional Chinese and Korean.

## Function specifications

## Common specifications

| Item | Function |  |
| :--- | :--- | :--- | :--- |
|  |  | You can create a configuration in the Sysmac Studio of the EtherCAT slaves connected to the built- All versions <br> in EtherCAT port of the NJ-series CPU unit and set the parameters for the EtherCAT masters and <br> slaves. |
|  | You can set up devices by dragging slaves from the device list displayed in the Toolbox pane to the <br> locations where you want to connect them. |  |


Item			Function	Sysmac
		-	The cam data settings are used to create electronic cam data. When you build the project for the controller, a cam table is created according to the cam data settings.	All versions
		Registering cam data	Cam data settings are added to the project.	
		Editing cam data	You can set properties and node points for cam data settings.	
		Transferring cam data	You can select to transfer all or part of the cam data.	
		Importing cam data settings	You can import cam data settings from a CSV file.	
		Exporting cam data settings	You can export cam data to a CSV file.	
		Registering cam definitions	You add new cam definitions to change cam table in the program.	Ver 1.09 or higher
		Editing cam definitions	You set cam definitions.	
		Transferring cam definitions	You transfer cam definitions to the controller.	
		Exporting cam tables	You can export cam table to a CSV file.	All versions
		Transferring cam tables from the controller to files	You can save a cam table in the NJ-series CPU unit to a CSV file.	
		Transferring cam tables from files to the controller	You can transfer a cam table that is saved in a CSV file to update the contents of a cam table that is already in the NJ-series CPU unit.	
		Superimposing cam table	You can superimpose the cam table from a CSV file on the cam profile curve position graph that is currently displayed.	
		-	Programs are executed in tasks in an NJ -series CPU unit. The task settings define the execution period, the execution timing, the programs executed by the task, the I/O refreshing performed by the task and which variables to share between tasks.	
		Registering tasks	The tasks, which are used to execute programs, are registered.	
		Setting task I/O	The task I/O settings define what units the task should perform I/O refreshing for.	
		Assigning programs	Program assignments define what programs a task will execute.	
		Setting exclusive control of variables in tasks	You can specify if a task can write to its own values (known as a refreshing task) or if it can only access them (an accessing task) for global variables. This ensures concurrency for global variable values from all tasks that reference them.	
		-	The I/O ports that correspond to the registered EtherCAT slaves and to the registered units on the CPU rack and Expansion racks are displayed. The I/O map is edited to assign variables to I/O ports. The variables are used in the user program.	
		Displaying I/O ports	I/O ports are displayed based on the configuration information of the devices (slaves and units).	
		Assigning variables	Variables are assigned to I/O ports.	
		Creating device variables	Device variables are created in the I/O map. You can either automatically create a device variable or manually enter the device variable to create.	
		Checking I/O assignments	The assignments of external I/O devices and variables are checked.	
	Vision sensor settings		You can set and calibrate vision sensors. Refer to "Vision sensor functions" section for more details.	Ver. 1.01 or higher
	Displacement sensor settings		You can set and calibrate displacement sensors.   Refer to "Displacement sensor functions" section for more details.	Ver. 1.05 or higher
	DB connection function settings		You can set and transfer the DB connection function settings. Refer to "DB connection functions" section for more details.	Ver 1.06 or higher with NJ501-1■20
	EtherNet/IP connection settings		You can make settings related to tag data links (connections) in an EtherNet/IP network. Refer to "EtherNet/IP connection functions" section for more details.	Ver. 1.10 or higher
	Instruction list (Toolbox)		A hierarchy of the instructions that you can use is displayed in the Toolbox. You can drag the required instruction to a program in the Ladder editor or ST editor to insert the instruction,	All versions
		-	Ladder diagram programming involves connecting rung components with connecting lines to build algorithms. Rung components and connecting lines are entered in the ladder editor.	
		Starting the ladder editor	The ladder editor for the program is started.	
		Adding and deleting sections	You can divide your ladder diagrams into smaller units for easier management. These units of division are called sections.	
		Inserting rung components	You insert rung components in the ladder editor to create an algorithm.	
		Inserting and deleting function blocks	You can insert a function block instruction or user-defined function block into the ladder editor.	
		Inserting and deleting functions	You can insert a function instruction or user-defined function into the ladder editor.	
		Inserting and deleting inline ST	You can insert a rung component in a ladder diagram to enable programming in ST. This allows you to include ST in a ladder diagram.	
		Editing rung components	You can copy and paste rung components.	
		Inserting and deleting jump labels and jumps	You can insert a jump label in the rung to jump and then specify that jump label when you insert a jump.	
		Inserting and deleting bookmarks	You can add bookmarks to the beginning of rungs and move between them.	
		Rung comments	You can add comments to rungs.	
		Displaying rung errors	When you enter a rung component, the format is always checked and any mistakes are displayed as errors. If there are any errors, a red line is displayed between the rung number and the left bus bar.	
		Entry assistance	When you enter instructions or parameters, each character that you enter from the keyboard narrows the list of candidates that is displayed for selection.	
		Displaying variable comments*2	A specified variable comment can be displayed with each variable of rung components on the ladder diagrams.   You can change the length of the displayed variable comments to make them easier to read. *3	Ver. 1.01 or higher


Item	Function		
		You combine different ST statements to build algorithms.	
	The ST editor for programs or for functions/function blocks is started.		
	Starting the ST editor	You combine different ST statements to build algorithms.	You can enter the first character of the instance name of the function or the function block in the ST   Editor to call and enter a function or function block.


Item		Function	Sysmac Studio
	Monitoring	Variables are monitored during ladder program execution. You can monitor the TRUE/FALSE status of inputs and outputs and the present values of variables in the NJ-series CPU unit. You can monitor operation on the ladder editor, ST editor, watch tab page or I/O map.	All versions
	Differential monitoring	You can detect the number of times the specified BOOL variable or BOOL member changes to TRUE or FALSE and display the count in the differential monitor window. You can check if bits turn ON and OFF and the number of times that they turn ON and OFF.	Ver. 1.04 or higher
	Changing present values and TRUE/ FALSE	You can change the values of variables that are used in the user program and settings to any desired value and you can change program inputs and outputs to TRUE or FALSE. This allows you to check the operation of the user program and settings.	All versions
	Changing the present values of variables ${ }^{8}$	You can change the present values of user-defined variables, system-defined variables and device variables as required. You can do this in the ladder editor, ST editor, watch tab page or I/O map.	
	Forced refreshing	Forced refreshing allows the user to refresh external inputs and outputs with user-specified values from the Sysmac Studio. The specified value is retained even if the value of the variable is overwritten from the user program. You can use forced refreshing to force BOOL variables to TRUE or FALSE in the ladder editor, watch tab page or I/O map.	
	Online editing	Online editing allows you to edit programs on systems that are currently in operation. Online editing can be used to edit only POUs and global variables. User-defined data types cannot be edited with online editing.	
	Cross reference tab page	Cross references allow you to see the programs and locations where program elements (variables, data types, I/O ports, functions or function blocks) are used. You can view all locations where an element is used from this list.	
	-	Data tracing allows you to sample the specified variables and store the values of the variables in trace memory without any programming. You can choose between two continuous trace methods: a triggered trace, where you set a trigger condition and data is saved before and after that condition is meet, or a continuous trace, in which continuous sampling is performed without any trigger and the results are stored in a file on your computer. However, you can still display data retrieved on the Sysmac Studio and save those results to a file even if you use a triggered trace. These same functions can be used with the simulator as well.	
	Setting sampling intervals	The interval to perform sampling on the target data is set. Sampling is performed for the specified task period, at the specified time, or when a trace sampling instruction is executed.	
	Setting triggers	To perform a triggered trace, you set a condition to trigger sampling. A suitable trigger condition is set to record data before and after an event.	
	.즈 Setting a continuous trace	The method to save the data traced during a continuous trace is set.	
	\% Setting variables to sample	The variables to store in trace memory are registered. The sampling intervals can also be set.	
		The data trace settings are transferred to the NJ-series CPU unit and the tracing starts. If you selected Trigger (Single) as the trace type, tracing waits for the trigger to begin sampling. If you selected Continuous, sampling begins immediately and all traced data is transferred to the computer as it is gathered and saved to a file.	
	Displaying trace results	You view the results of the traced data in either a chart or the 3D Motion Monitor. After sampling begins, sample data is immediately transferred and drawn on the graph. The trace target variable table shows the maximum, minimum and average values for each variable. You can change the line colors on the graph. ${ }^{* 9}$   You can consecutively read and display continuous trace results from more than one file. ${ }^{* 10}$	
	Exporting/importing trace results	Trace results are saved within your project automatically when you save the project on the Sysmac Studio. If you want to save this data as a separate file, you can export the data to a CSV file. You can import trace results that you have exported.	
	Printing trace results	You can print out data trace settings along with digital and analog charts.	
	Debugging vision sensors	You can debug the vision sensor offline.   Refer to "Vision sensor functions" section for more details.	Ver. 1.01 or higher
	Debugging displacement sensors	You can debug displacement sensors offline.   Refer to "Displacement sensor functions" section for more details.	Ver. 1.05 or higher
	Programs for debugging	You can create programs for debugging that are used only to execute simulations and specify virtual inputs for simulation.	All versions
	Selecting what to a simulate	You can select the programs to simulate from all of the programs in the Sysmac Studio. Programs can be dragged to select them.	
	Setting breakpoints	You can set breakpoints to stop the simulation in the program editor.	
	Executing and stopping simulations	You can control simulation execution to monitor the user program or to check operation through data tracing. Step execution and pausing are also possible.	
		You can perform a linked simulation between sequence control and continuous control (operations controlled by Simulink) to debug the sequence control program and continuous control program and continuous control program ${ }^{* 11}$.	Ver 1.09 or higher
	¢ ${ }_{\text {© }}^{\text {¢ }}$ Changing the simulation speed	You can change the execution speed.	All versions
		You can display the task periods.	
	Batch transfer of the present values of variables	You can save the values of variables at specific times during simulations in a file, or you can write the values of variables that were saved in a file back to the simulator. This allows you to write the initial values of variables, e.g., for test applications, before you start a simulation.	Ver. 1.02 or higher
	Integrated NS-series PT simulation ${ }^{* 12}$	You can simulate the linked operation of a sequence program and an NS-series programmable terminal to debug the sequence program and screen data offline.	
		You can create a 3D device model at the control target to monitor with the 3D motion monitor function.	All versions
		You set the axis variables for each element of the 3D equipment model, and then set the 3D equipment into motion according to those axis motions.	
	め © Displaying 2D paths	You can display the 2D paths of the markers for the projections in the 3D display.	
	Displaying unit production information	You can display the production information of the NJ -series CPU unit and special units, including the models of the units and unit versions.	
	Monitoring task execution times	You can monitor the execution time of each task when the user program is executed on a NJ -series CPU unit or in the simulator. When you are connected to the simulator, you can also monitor the real processing time of tasks. This allows you to perform a controller performance test.	


Item			Function	Sysmac Studio
		-	You can use troubleshooting to check the errors that occurred in the controller, display corrections for the errors and clear the errors.	All versions
		Controller errors	Any current controller errors are displayed. (Observations and information are not displayed.)	
		User-defined errors	Information is displayed on current errors.	
		Controller event log	You can display a log of controller events (including controller errors and controller information). (You cannot display logs from EtherCAT slaves.)	
		User-defined event log	The log of user-defined events that were stored for the create user-defined error (SetAlarm) instruction and the create user-defined Information (SetInfo) instruction is displayed.	
		Event settings table	The event setting table is used to register the contents displayed on the Sysmac Studio on HMIs for user-defined events that occur for execution of the create user-defined error (SetAlarm) instruction and the create user-defined information (Setlnfo) instruction.	
	User memory usage monitor		An estimate of the space that is used by the user program that you are editing in the Sysmac Studio is displayed in relation to the size of the controller's memory.	
	Setting clock information		You can read and set the NJ -series CPU unit's clock. The computer's clock information is also displayed.	
	DB connection function		You can monitor information for the DB connection. Refer to "DB connection functions" section for more details.	Ver 1.06 or higher with NJ501-1■20
	Going online with a controller		An online connection is established with the controller. You also can transfer a project from the connected controller to the computer with a simple operation without creating a new project or opening an existing project. ${ }^{* 5}$	All versions
	Checking for forced refreshing		When you go offline, any forced refreshing is cleared.	
	Changing the operating mode of the controller		There are two operating modes for NJ -series controllers, depending on if control programs are executed or not. These are RUN mode and PROGRAM mode.	
	Resetting the controller		The operations and status when the power supply to the controller is cycled are emulated. This can be performed only in PROGRAM mode. You cannot reset the controller in RUN mode.	
		-	You can back up, restore and compare the user program and other NJ -series controller data to replace hardware, such as the CPU unit, or to restore device data.	
		Variables and memory backup	You can back up the contents of retained memory to a file and restore the contents of the backup file. You can individually select the retained variables to restore. ${ }^{* 13}$	
		Controller backup	You can backup data (user program and settings, variable values, memory values, unit settings and slave settings) from a controller to a file and restore the backed up data from the file to the controller.	Ver. 1.04 or higher
		SD memory card backup	You can backup the data in the NJ -series CPU unit to an SD memory card mounted in the controller or compare the data in the NJ -series controller to data in the SD memory card.	
		Importing/exporting to/from backup files	You can import the data in a backup file created for a controller backup or SD memory card backup to a project. Also, you can export project data to a backup file.	
		Confirming NJ-series CPU unit names and serial IDs	If the name or the serial ID is different between the project and the NJ -series CPU unit when an online connection is established, a confirmation dialog box is displayed.	All versions
		Operation authority verification	You can set five operation authorities (administrator, planning engineer, maintainer, operator and observer) to restrict the operations that can be performed according to the operation authority of the user.	
		Write protection of the CPU unit	You can prevent rewriting of data in the CPU unit from the Sysmac Studio.	
		Authentication of user program execution IDs	You can ensure that a user program cannot be operated on another CPU unit even if copied.	
		User program transfer with no restoration information	The program source code is not transferred. If this option is selected, programs are not displayed even if uploaded from another computer. However, variables and settings are transferred even if this option is selected.	
		Password protection for project files	You can place a password on the file to protect your assets.	
		Data protection	You can set passwords for individual POUs (programs, functions and function block definitions) to prohibit displaying, changing and copying them.	Ver. 1.02 or higher
	Dockin		You can dock and undock configuration tab pages, program editors, watch tab pages, cross reference tab page and other window parts to/from the main Sysmac Studio window.	Ver 1.09 or higher
	Sysmac Studio help system		You can access Sysmac Studio operating procedures.	All versions
	Instructions reference		Information is provided on how to use the instructions that are supported by the NJ -series CPU units.	
	System-defined variable reference		You can display a list of descriptions of the system-defined variables that you can use on the Sysmac Studio.	
	Keyboard mapping reference		You can display a list of convenient shortcut keys that you can use on the Sysmac Studio.	

[^20]
## DB connection functions

Item			Description
	DBMS settings		The database to connect is selected.
	Run mode setting of the DB connection service		The operation mode is selected to send SQL statements when DB connection instructions are executed or test mode is selected to not send SQL statements when DB connection instructions are executed.
	Spooling settings		You can set the service so that SQL statements are spooled when problems occur and resent when operation is restored.
	Operation log settings		Settings are made for the execution log for execution of the DB connection service, the debug log for execution of SQL statements for the DB connection service and the SQL execution failure log for SQL execution failures.
	Database connection service shutdown settings		Settings are made to control operation in order to end the DB connection service after automatically storing the operation log files on an SD memory card.
Programming ${ }^{\text {PB connection instructions }}$			You can use the following DB connection instructions to write the user program for controlling the data in the database.   DB_Insert (insert DB record), DB_Select (retrieve DB record), DB_Update (update DB record) and DB_Delete (delete DB record)
	Monitoring the DB connection service		The status of the DB connection service is monitored.
	Monitoring the DB connections		The status of each DB connection is monitored.
	Displaying the operation logs		The contents of the execution log, debug log and SQL execution failure log are displayed.

Note: The DB connection service can be used if the NJ501-1 $\square 20$ is selected with Sysmac Studio version 1.06 or higher.

## Safety control unit functions

Item			Description
	Safety I/O settings	Safety I/O settings	You make a setting for safety process data communications and connection with safety I/O devices.
		Safety process data communications settings	You select safety I/O units to perform safety process data communications (FSoE communications) and make necessary settings.
		Safety device allocation settings	You set the connection between safety I/O units and safety devices.
	Slave I/O settings	Exposed variable settings	You set wether to expose global variables of the safety CPU unit. The values of exposed variables can be referenced from NJ-series CPU units.
	Safetytask	Safety task settings	You define the execution cycle and timing of the safety task and programs to be executed in the task.
		Assigning programs	You assign safety programs to execute the task.
	I/O map settings		The ports of safety I/O units used in safety process data communications are displayed. You assign device variables used in safety programs to the I/O ports.
	Instruction list (Toolbox)		A hierarchy of the functions and function blocks that you can use is displayed in the toolbox. You can drag the required functions and function blocks onto the FBD editor to insert it to a safety program.
	FBD programming	FBD programming	You connect variables, functions and function blocks with connecting lines to build networks. The FBD editor is used to enter them.
		Adding FBD networks	You create FBD networks on the FBD editor to create algorithms.
		Inserting/Deleting functions/ function blocks	You insert and delete functions and function blocks on the FBD editor.
		Entry assistance	When you enter functions, function blocks or parameters, each character that you enter from the keyboard narrows the list of candidates that is displayed for selection.
		Commenting out FBD networks	You can comment out each FBD network. When a network is commented out, it is no longer executed.
	Creating variables		You create variables used in safety programs in the global or local variable table,
	Creating function blocks		You create user-defined function blocks.
	Searching and replacing		You can search for and replace strings in the variable tables, programs and function blocks of a safety CPU unit.
응   응   0   0   0	Monitoring		Variables are monitored during safety program execution. You can monitor the present values of device variables assigned to safety I/O units and user-defined variables. The values can be monitored on the FBD editor or watch tab page.
	Changing the present values of variables		You can change the present values of user-defined variables and device variables as required. You can do this on the FBD editor or watch tab page.
	Forced refreshing		The inputs from external devices and outputs to external devices are refreshed with a specified value on the Sysmac Studio. The specified value is retained even if the value of the variable is overwritten from the user program.   You can use forced refreshing on the FBD editor or watch tab page.
	Offline debugging ${ }^{1}$		You can check if the control program logic works as designed in advance using a special debugging function for the Simulator without connecting online with the safety CPU unit.
	User memory usage monitor*2		The memory usage of the safety control system and usage of safety network such as I/O data size are displayed.
$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{0}}$	Safety validation		You append the "safety-validated" information to a safety program when you can ensure safety of the program after you complete debugging.
	Changing operation mode		There are four operating modes: PROGRAM mode, DEBUG mode (STOPPED), DEBUG mode (RUN) and RUN mode. The RUN mode can be selected only for the validated safety programs.
	Setting the node name		You set a unique name for each safety CPU unit to confirm that you operate the correct safety CPU unit.
	Safety password		You can prevent unauthorized access to safety functions of safety CPU units by setting a safety password for online operations that affect the safety functions.

[^21]
## Vision sensor functions

## FQ-M vision sensor

Item		Description
	General settings	Displays and sets basic information of the sensor.
	\# Sensor connection	Changes the connection status of the sensor, and sets the conditions for communications with the sensor.
	Sensor control in online	Performs various controls for the sensor mode change, data transfer/save and monitoring.
	- Sensor error history	Displays and clears the error history of an online sensor.
	$\sum$ Tool	Restarts and initializes the sensor, updates the firmware of the sensor, reads sensor data from a file, saves a sensor data to a file, prints the sensor parameters and displays help.
	Image condition settings	Adjusts the image condition.
	$\pm \quad$ Specifies the calibration pattern	Sets a registered calibration pattern.
	\% Registers inspection item	Registers the inspection item to use in the measurement. You can select from the following inspection items: edge position, search, labeling, shape search.
	장 Calculation settings	Makes a setting for basic arithmetic operations and function operations using inspection item judgment results and measurement data.
	¢ Logging settings	Makes a setting for logging measurement results of inspection items and calculation results.
	© Output settings	Makes a setting for data to output to external devices.
	Run settings	Switch sensor modes or monitors measurement results.
	Trigger condition settings	Sets the trigger type and image timing.
	* 1/O settings	Sets the conditions of output signals. You can check the status of I/O signal while online.
	\% Encoder settings	Make settings for the encoder such as common encoder settings, ring counter settings and encoder trigger settings.
	E Ethernet communication settings	Makes Ethernet communication settings. You can select data communication from no-protocol data, PLC link data and programmable no-protocol data.
	$\begin{array}{ll} \text { 末 } & \text { EtherCAT communication } \\ \text { "े } & \text { settings } \\ \hline \end{array}$	Makes the EtherCAT communication settings according to the communication settings of the EtherCAT master.
	$\underset{\text { ¢ }}{\sim}$ Logging condition settings	Sets the conditions to log to the internal memory of sensor.
	の Sensor settings	Makes the settings for startup scene control function, password setting function and adjustment judgment function.
	Calibration scene data settings	Calculates, views and edits the calibration parameters. The vision sensor supports general-purpose calibration and calibration for conveyor tracking.
오   흥   0   0   0	Offline debugging of sensor operation	Simulates measurements offline without connecting to the vision sensor. You can use external image files and perform measurements under the conditions set in the offline settings, then display the results of those measurements.
	Offline debugging of the sensor control program and sensor operation	Performs a linked simulation between the sequence control of an NJ -series controller and the operation of an FQ-M sensor in EtherCAT configuration systems. This allows you to debug operation offline from when measurements and other processing are performed for control signals such as measurement triggers through the output of processing results.

Note: Supported only by the Sysmac Studio version 1.01 or higher.

## FH vision sensor

Item			Description
	$\frac{. ㄷ ㅡ ㄹ ~}{\bar{n}}$	Sensor information	Displays and sets basic information of the sensor.
		Online	Changes the connection status of the sensor and performs various controls such as sensor restart and initialization.
	을ㅎㅎㅇ	Operation view	Monitors the measurement images of the sensor and detailed results of each process unit.
		Scene maintenance view	Edits, manages and saves the scene groups and scenes.
		Flow edit	Creates the process flow in combination of user-specified units.
		Process unit edit	Edits each process unit.
		Camera settings	Checks the camera connection status and sets the camera's imaging timing and communications speed.
		Controller settings	Makes the system environment settings for the sensor.
		Parallel I/O settings	Sets the conditions of output signals.
		RS-232C/422 settings	Makes the RS232C/422 communications settings.
		Ethernet communication settings	Makes the Ethernet communication settings.
		EtherNet/IP communication settings	Makes the EtherNet/IP communication settings.
		EtherCAT communication settings	Makes the EtherCAT communication settings.
		Encoder settings	Makes the encoder settings.
	$\stackrel{\circ}{\circ}$	Communication command customization tool	Makes the settings for customized communication commands.
		File saving tool	Copies and transfers the files in the sensor memory.
		Calibration support tool	Checks the calibration information.
		User data tool	Edits the data (user data) that can be shared and used in sensors.
		Security setting tool ${ }^{11}$	Edits the security settings of the sensor.
		Scene group save destination setting tool	Sets the destination to save the scene group data.
		Image file save tool ${ }^{11}$	Saves the logging images and image files stored in the sensor memory.
		Registered image management tool ${ }^{* 1}$	Saves the images used for model registration and reference registration as registered images.
		Reference position update tool*1	Edits all reference positions of more than one processing unit.
		Scene group data conversion tool ${ }^{* 1}$	Creates the scene group data with more than 128 scenes.
		Scene control macro tool ${ }^{11}$	Makes a setting for complementing and expanding the measurement flow and scene control.


Item	Offline debugging of sensor	
Debugging	Operation	
	Offline debugging of sensor   control program and sensor   operation 2	Si   for   Security
Prevention of incorrect   operation	Pr	Pr

*1 Supported only by the Sysmac Studio version 1.10 or higher.
*2 Supported only by the Sysmac Studio version 1.08 or higher.
*3 Supported only by the Sysmac Studio version 1.09 or higher.
Note: Supported only by the Sysmac Studio version 1.07 or higher.

## Displacement sensor functions

Item			Description
		General settings	Displays and sets basic information on the sensor.
		Sensor connection	Changes the connection status of the sensor, and sets the conditions for communications with the sensor.
		Online sensor control	Performs various controls for the sensor (e.g., changing the mode, controlling internal logging and monitoring).
		Tools	Restarts and initializes the sensor, updates the firmware in the sensor, recovers ROM data, prints the sensor parameters and displays help.
		Setting sensing conditions	Adjusts the light reception conditions for each measurement region.
		Setting task conditions	Used to select the measurement items to use in measurements. You can select from the height, thickness or calculations.   The following are set for the measurement items: scaling, filters, holding, zero-resetting and judgement conditions.
		Setting I/O conditions	Sets parameters for outputting judgements and analog values to external devices.
		Sensor settings	Sets the following: ZW sensor controller's key lock, number of displayed digits below the decimal point, the bank mode, the analog output mode and timing/reset key inputs.
		Ethernet communication settings	Sets up Ethernet communications and field bus parameters.
		RS-232C communication settings	Sets up RS-232C communications.
		Data output settings	Sets serial output parameters for holding values.
Debugging		Offline debugging of sensor control programs and sensor operation	Performs a linked simulation between the sequence control of an NJ -series controller and the operation of a ZW sensor in EtherCAT configuration systems.   This allows you to simulate the operation of signals when timing signals and other control signals are input to the sensor to debug the control logic offline.

Note: Supported only by the Sysmac Studio version 1.05 or higher.

## EtherNet/IP connection functions

Item			Description
	Connection settings		Functions related to tag data links (connection) settings in the EtherNet/IP network are provided.
		Editing tag sets	You create tags and tag sets using network variables.
		Editing target devices	You add target devices to connect to.
		Editing connections	You select tag sets from a list and create connections.
		Adding EDS files	You can add the types of EtherNet/IP devices that can be set as targets.
		Synchronized transfer and batch transfer	All the connection settings in the controller or the project are transferred at the same time.
		Individual transfer and comparison	You can transfer or compare the connection settings of each EtherNet/IP device individually.
		Status monitor	The operating status of one or more connections is displayed. You can start or stop all the connections at the same time.
		Tag/tag set monitor	The detailed operation information of tags and tag sets, such as the presence or absence of tags and connection times of tag sets, is displayed.
		Ethernet information monitor	The detailed operation information of EtherNet/IP devices, such as bandwidth usage (pps), is displayed.

[^22]Web support services

Category	Function
Online user registration	You can register online as a user of Sysmac Studio.
Automatic update	With the automatic update function of Sysmac Studio, the latest update information for your computer environment   can be searched for and applied using the Internet.   Your Sysmac Studio can be constantly updated to the latest state.

## Ordering information

## Automation software

Please purchase a DVD and licenses the first time you purchase the Sysmac Studio. DVD's and licenses are available individually. The license does not include the DVD

Product	Specifications			Model
	Description	Number of licenses	Media	
Sysmac Studio Standard Edition Ver. 1.	The Sysmac Studio provides an integrated development environment to set up, program, debug and maintain NJ -series controllers and other machine automation controllers, as well EtherCAT slaves.   Sysmac Studio runs on the following OS: Windows XP (Service Pack 3 or higher, 32-bit version) / Vista (32-bit version) / 7 (32-bit/64-bit version) / 8 (32-bit/64-bit version)	- (Media only)	DVD*1	SYSMAC-SE200D
		1 license	-	SYSMAC-SE201L
		3 licenses	-	SYSMAC-SE203L
		10 licenses	-	SYSMAC-SE210L
		30 licenses	-	SYSMAC-SE230L
		50 licenses	-	SYSMAC-SE250L
Sysmac Studio Vision Edition Ver. 1. $\square^{*}{ }^{*},{ }^{*} 4$	Sysmac Studio Vision Edition is a limited license that provides selected functions required for FQ-M series and FH-series vision sensor settings.	1 license	-	SYSMAC-VE001L
Sysmac Studio Measurement Sensor Edition Ver. 1. $\square \square^{* 3, * 4}$	Sysmac Studio Measurement Sensor Edition is a limited license that provides selected functions required for ZW-series displacement sensor settings.	1 license	-	SYSMAC-ME001L
		3 licenses	-	SYSMAC-ME003L

${ }^{1}$ The same media is used for both the Standard Edition and the Vision Edition.
${ }^{2}$ With the Vision Edition, you can use only the setup functions for FQ-M series and FH-series vision sensors.
${ }^{3}$ With the Measurement Sensor Edition, you can use only the setup functions for ZW-series displacement sensors.
4 This product is a license only. You need the Sysmac Studio Standard Edition DVD media to install it.
Note: Site licenses are available for users who will run Sysmac Studio on multiple computers. The license number for a robot is required to use this CPU unit. Ask your OMRON sales representative for details.

## Components

DVD (SYSMAC-SE200D)

Components	Details
Introduction	An introduction about components, installation/uninstallation, user registration and auto update of the Sysmac Studio is provided.
Setup disk (DVD-ROM)	1

License (SYSMAC-SE2 $\square \square \mathrm{L} / \mathrm{VE} 0 \square \square \mathrm{~L} / \mathrm{MEO} \square \square \mathrm{L}$ )

Components	Details
License agreement	The license agreement gives the usage conditions and warranty for the Sysmac Studio.
License card	A model number, version, license number and number of licenses are described.
User registration card	Two cards are contained. One is for users in Japan and the other is for users in other countries.

## Included support software

DVD media of Sysmac Studio includes the following support software:

Included support software		Outline
CX-Designer	Ver. 3. $\square \square$	The CX-Designer is used to create screens for NS-series PTs.
CX-Integrator	Ver. 2. $\square \square$	The CX-Integrator is used to set up FA networks.
CX-Protocol	Ver. 1. $\square \square$	The CX-Protocol is used for protocol macros for serial communications units.
Network Configurator	Ver. 3. $\square \square$	The Network Configurator is used for tag data links on the built-in EtherNet/IP port.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.<br>To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

Cat. No. SysCat_I181E-EN-05 In the interest of product improvement, specifications are subject to change without notice.

## CX-Compolet/SYSMAC Gateway

## Specifications

System requirements (CX-Compolet/SYSMAC Gateway)

Item	Requirement	
Operating system (OS)   Japanese or English system	Microsoft Windows Vista (32-bit)   Microsoft Windows 7 (32-bit/64-bit $\left.{ }^{* 1}\right)$   Microsoft Windows 8.1 $1^{* 2}\left(32\right.$-bit/64-bit $\left.{ }^{* 1}\right)$   Microsoft Windows Server 2003 (32-bit)   Microsoft Windows Server 2008 (32-bit/64-bit $\left.{ }^{* 1}\right)$ or Microsoft Windows Server 2008R2 (64-bit $\left.{ }^{* 1}\right)$	
Personal computer	Windows computers with Intel (x86 processor)	Windows computers with Intel 32-bit (x86 processor) or   $64-$ bit (x64 based processor)
CPU	Processor recommended by Microsoft   (1 GHz or faster recommended)	Processor recommended by Microsoft   (2 GHz or faster recommended)
Memory	512 MB min. (1 GB min. recommended)	1 GB min. (2 GB min. recommended)
Hard disk	At least 400 MB of available space	

${ }^{* 1}$ This software runs on WOW64 (Windows-On-Windows 64). Customer application must be run as 32 -bit process.
${ }^{*}{ }^{2}$ The CX-Compolet version 1.4 or higher is required for Microsoft Windows 8.1
Note: USB port on the PC can not be shared between SYSMAC Gateway and CX-One in Windows Vista or higher.

## Correspondence between controller models and connected networks

Machine controller model	Personal computer side							
	RS-232C				USB	Ethernet (LAN)		ControllerLink
	SYSWAY (Host Link C mode)	SYSWAYCV (Host Link FINS)	CompoWay/ F (master at PC)	Peripheral Bus	FINS	Ethernet (FINS)	EtherNet/IP	
NJ5 CPU (unit version 1.01 or higher) ${ }^{* 1}$	No	No	No	No	No	No	Yes* ${ }^{*}$	No
NJ3 CPU (unit version 1.01 or higher) ${ }^{* 1}$	No	No	No	No	No	No	Yes* ${ }^{\text {2 }}$	No

${ }^{* 1}$ To connect the NJ controller, CX-Compolet/SYSMAC Gateway version 1.31 or higher is required.
${ }^{*}$ 2 Tag data links between SYSMAC Gateway and the NJ-series CPU unit can be created within the CJ-series specifications for variable with basic data type, array variable and structure variable SYSMAC Gateway memory allocation of structure variable is the same as the CJ-series

## Ordering information

## CX-Compolet

Product	Specifications		Model
CX-Compolet ${ }^{11}$	Software components that can make it easy to create programs for communications between a computer and controllers.   This packaged product bundles CX-Compolet and SYSMAC Gateway with 1 license each.   Supported execution environment: .NET Framework (1.1, 2.0, 3.0, 3.5 or 4.0) Development environment: Visual Studio .NET²/.NET2003/.NET2005/.NET2008/ .NET2010   Development languages: Visual Basic .NET, Visual C\# .NET, Visual Basic ver. 5/6*3 Supported communications: Equal to SYSMAC Gateway	1 user license	CX-COMPOLET-EV1-01L
		5 user licenses	CX-COMPOLET-EV1-05L
		10 user licenses	CX-COMPOLET-EV1-10L
		Site user license	CX-COMPOLET-EV1-XXL

*1 One license is required per computer
*2 Only the components compatible with CX-Compolet version 2003 are supported. A development environment of .NET2003 or higher is required for CIP communications.
${ }^{* 3}$ Only functions provided by SYSMAC Compolet v2 as ActiveX controls are supported for Visual Basic version 5 or 6 (Windows XP only).
Note: Supported only by the NJ-series CPU units with unit version 1.01 or higher and the CX-Compolet version 1.31 or higher.

## SYSMAC Gateway

Product	Specifications	Model
SYSMAC Gateway"1	Communications middleware for personal computers running Windows.   Supports CIP communications and tag data links (EtherNet/IP) in addition to FinsGateway functions.   This package includes SYSMAC Gateway with 1 license. (FinsGateway is also included.)   Supported communications: RS-232C, USB, Controller Link, SYSMAC LINK, Ethernet, EtherNet/IP	SYSMAC-GATEWAY-RUN-V1

[^23]Selection table - Ethernet and EtherCAT media

	Ethernet and EtherCAT cables			
Model	Ethernet patch cable			
Type	Cable with standard connectors on both ends (RJ45/RJ45)	Cable with standard connectors on both ends (RJ45/RJ45)	Cable with rugged connectors on both ends (RJ45/RJ45)	Cable with rugged connectors on both ends (M12 Straight/ RJ45)
Specifications	- Cat 6a   - 4 pair   - Double shield S/FTP	- Cat 5   - 4 pair   - Double shield SF/UTP	- Cat 5   - Quad-core   - Double shield SF/UTP	- Cat 5   - Quad-core   - Double shield SF/UTP
Cable sheath material	Low Smoke Zero Halogen (LSZH)	Polyurethane (PUR)	Polyvinylchloride (PVC)	Polyvinylchloride (PVC)
Cable colour	Yellow, blue and green	Green	Grey	Grey
Length	$\begin{aligned} & 0.2,0.3,0.5,1.0,1.5,2.0,3.0 \\ & 5.0,7.5,10,15,20 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0.5,1.0,1.5,2.0,3.0,5.0,7.5, \\ & 10,15,20 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0.3,0.5,1.0,2.0,3.0,5.0,10 \text {, } \\ & 15 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0.3,0.5,1.0,2.0,3.0,5.0,10 \text {, } \\ & 15 \mathrm{~m} \end{aligned}$
Page	48	48	48	48


	Ethernet and EtherCAT connectors		
Model	Ethernet field-mount plugs		Ethernet socket
Type	Industrial RJ45 connector	Rugged RJ45 connector	Socket to terminate installation cable in the cabinet
Specifications	- Metal RJ45   - For AWG22 to AWG26	- Plastic RJ45   - For AWG22 to AWG24	- RJ45 socket   - DIN-rail mount
Cable colour	Chrome	Black	Grey
Dimension	52 mm	52 mm	$60 \times 17.5 \times 67 \mathrm{~mm}$
Page	48	48	48


	Industrial Switching Hub		
Model		Ethernet switch	
Number of ports	5	5	3
Functions	- QoS for EtherNet/IP   - Auto MDI/MDIX   - Failure detection: Broadcast storm and LSI error detection 10/100BASE-TX, AutoNegotiation	- QoS for EtherNet/IP   - Auto MDI/MDIX	- QoS for EtherNet/IP   - Auto MDI/MDIX
Power requirements	24 VDC ( $\pm 5 \%$ )	$24 \mathrm{VDC}( \pm 5 \%)$	24 VDC ( $\pm 5 \%$ )
Dimension	$48 \times 78 \times 90 \mathrm{~mm}$	$48 \times 78 \times 90 \mathrm{~mm}$	$25 \times 78 \times 90 \mathrm{~mm}$
Mounting	DIN rail	DIN rail	DIN rail
Page	47	47	47


	Ethernet and EtherCAT cables		
Model	Ethernet patch cable	Ethernet in	allation cable
Type	Cable with rugged connectors on both ends (M12 Right angle/ RJ45)	Cable without connectors	Cable without connectors
Specifications	- Cat 5   - Quad-core   - Double shield SF/UTP	- Cat 5   - $4 \times 2 \times$ AWG24/1 (Solid core)   - Double shield SF/UTP	- Cat 5   - $4 \times 2 \times$ AWG26/7   (Stranded core)   - Double shield SF/UTP
Cable sheath material	Polyvinylchloride (PVC)	Polyurethane (PUR)	Polyurethane (PUR)
Cable colour	Grey	Green	Green
Length	$\begin{aligned} & 0.3,0.5,1.0,2.0,3.0,5.0,10 \\ & 15 \mathrm{~m} \end{aligned}$	100 m	100 m
Page	48	48	48


	EtherCAT branching unit	
Model	EtherCAT junction slave	
Number of ports	6	3
Functions	- Power, Link/Act indicators   - Auto MDI/MDIX   - Reference clock	- Power, Link/Act indicators   - Auto MDI/MDIX   - Reference clock
Power requirements	24 VDC (-15\% to +20\%)	24 VDC (-15\% to +20\%)
Dimension	$48 \times 78 \times 90 \mathrm{~mm}$	$25 \times 78 \times 90 \mathrm{~mm}$
Mounting	DIN rail	DIN rail
Page	47	47

## Technical documentation

	omron
symar	


	Product	Title	Cat. No.
Machine automation controller	NJ-series CPU unit hardware	User Manual	W500-E1
	NJ-series CPU unit software	User Manual	W501-E1
	NJ -series CPU unit motion montrol	User Manual	W507-E1
	NJ-series CPU unit built-in EtherCAT port	User Manual	W505-E1
	NJ-series CPU unit built-in EtherNet/IP port	User Manual	W506-E1
	NJ-series database connection CPU units	User Manual	W527-E1
	NJ-series CPU unit	Startup Guide	W513-E1
	NJ-series CPU unit motion control	Startup Guide	W514-E1
	NJ -series instructions	Reference Manual	W502-E1
	NJ-series motion control instructions	Reference Manual	W508-E1
	NJ-series troubleshooting	Troubleshooting Manual	W503-E1
	CJ-series analog I/O units for NJ -series CPU unit	Operation Manual	W490-E1
		Operation Manual	W498-E1
	CJ-series temperature control units for NJ -series CPU unit	Operation Manual	W491-E1
	CJ-series ID sensor units for NJ -series CPU unit	Operation Manual	Z317-E1
	CJ-series high-speed counter units for NJ -series CPU unit	Operation Manual	W492-E1
	CJ-series serial communications units for NJ -series CPU unit	Operation Manual	W494-E1
	CJ-series EtherNet/IP units for NJ -series CPU unit	Operation Manual	W495-E1
	CJ-series DeviceNet units for NJ -series CPU unit	Operation Manual	W497-E1
	CJ-series CompoNet master units for NJ -series CPU unit	Operation Manual	W493-E1
Software	Sysmac Studio	Operation Manual	W504-E1
1/0	NX-series EtherCAT coupler unit	User Manual	W519-E1
	NX-series digital I/O units	User Manual	W521-E1
	NX-series analog I/O units	User Manual	W522-E1
	NX-series position interface units	User Manual	W524-E1
	NX-series system units	User Manual	W523-E1
	NX-series	Data Reference Manual	W525-E1
	GX-series	User Manual	W488-E1
Safety	NX-series safety control units	User Manual	Z930-E1
		Reference Manual	Z931-E1
AC servo system	Accurax G5 EtherCAT rotary servo system	User Manual	1576-E1
	Accurax G5 EtherCAT linear servo system	User Manual	I577-E1
Frequency inverter	MX2 inverter	User Manual	1570-E2
		Quick Start Guide	I129E-EN
	RX inverter	User Manual	1560-E2
		Quick Start Guide	1130E-EN
	MX2/RX EtherCAT communication unit	User Manual	I574-E1
Vision	FH series vision system	User Manual	Z340-E1
	FH series vision system processing item function	Reference Manual	Z341-E1
	FH series vision system communication settings	User Manual	Z342-E1
	FH series vision system for Sysmac Studio	Operation Manual	Z343-E1
	FQ-M series specialized vision sensor for positioning	User Manual	Z314-E1
Sensing	ZW displacement measurement sensor	User Manual	Z332-E1
	N-Smart EtherCAT sensor communication unit	User Manual	E429-E1
HMI	NA-series programmable terminals	Hardware Manual	V117-E1
		Software Manual	V118-E1
		Device Connection Manual	V119-E1
		Quick Start Guide	V120-E1

## Would you like to know more?

OMRON EUROPE
(2) +31 (0) 235681300

- industrial.omron.eu

Q omron.me/socialmedia_eu

## Sales \& Support Offices

## Austria

Tel: +43 (0) 2236377800 industrial.omron.at

## Belgium

Tel: +32 (0) 24662480 industrial.omron.be

## Czech Republic

Tel: +420 234602602
industrial.omron.cz

## Denmark

Tel: +45 43440011
industrial.omron.dk

## Finland

Tel: +358 (0) 207464200
industrial.omron.fi

## France

Tel: +33 (0) 156637000
industrial.omron.fr

Germany
Tel: +49 (0) 217368000 industrial.omron.de

## Hungary

Tel: +36 13993050 industrial.omron.hu

## Italy

Tel: +39 0232681
industrial.omron.it

## Netherlands

Tel: +31 (0) 235681100
industrial.omron.nl

## Norway

Tel: +47 (0) 22657500
industrial.omron.no

## Poland

Tel: +48 224586666 industrial.omron.pl

## Portugal

Tel: +351 219429400 industrial.omron.pt

## Russia

Tel: +7 4956489450 industrial.omron.ru

## South Africa

Tel: +27 (0)115792600
industrial.omron.co.za

## Spain

Tel: +34 902100221
industrial.omron.es

## Sweden

Tel: +46 (0) 86323500
industrial.omron.se

## Switzerland

Tel: +41 (0) 417481313 industrial.omron.ch

## Turkey

Tel: +90 2124673000 industrial.omron.com.tr

## United Kingdom

Tel: +44 (0) 1908258258
industrial.omron.co.uk

## More Omron representatives

industrial.omron.eu


[^0]:    Sysmac is a trademark or registered trademark of OMRON Corporation in Japan and other countries for OMRON factory automation products.
    Windows is registered trademarks of Microsoft Corporation in the USA and other countries.
    EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
    Safety over EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany
    EtherNet/IPTM, CompoNet
    The product photographs and figures that are used in this catalog may vary somewhat from the acemarks of their respective companies.
    Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.
    Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

[^1]:    * Refer to the CJ unit tables in the ordering information section for the specific unit width

[^2]:    Note: For details on unit current consumption, refer to ordering information.

[^3]:    *1. To use a V680-H01 antenna, refer to the V680 Series RFID system catalog (Cat. No. Q151)

[^4]:    ${ }^{* 1}$. Units with Screwless push-in connections are supplied with the appropriate terminal connector.

[^5]:    *1 For servo drives from $750 \mathrm{~W}, \mathrm{~B} 2$ and B3 are short-circuited. If the internal regenerative resistor is insufficient, remove the wire between B2 and B3 and connect an external regenerative resistor between B1 and B2.
    *2 For use only with an absolute encoder. If a backup battery is connected to CN1 I/O connector, an encoder cable with a battery is not required.
    *3 Wiring diagram example using the G9SX safety unit. If a safety unit is not used, keep the factory safety bypass connector installed in the CN8.

[^6]:    1 For servo drives from 750 W , B 2 and B 3 are short-circuited. If the internal regenerative resistor is insufficient, remove the wire between B 2 and B 3 and connect an external regenerative resistor between B1 and B2.

[^7]:    Mating connector:

[^8]:    ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
    To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^9]:    ${ }^{1}$ The 5 lines LCD digital operator is provided with the inverter from factory.
    ${ }^{2}$ When a communication option board is mounted, there are two options: mount a blind cover or a LED digital operator.

[^10]:    Based on a standard 3-Phase standard motor.

[^11]:    Cat. No. SysCat_I116E-EN-05 In the interest of product improvement, specifications are subject to change without notice.

[^12]:    ${ }^{1}$ Based on a standard 3-Phase standard motor.
    ${ }^{*} 2$ Forced air cooling for IP54 models.

[^13]:    Note: Option boards could be fitted inside the IP54 model.

[^14]:    ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
    To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^15]:    *1. Up to four cameras can be connected to one controller. Up to eight cameras other than 12 million-pixel cameras can be connected to a FH-3050-20 or FH-1050-20.
    *2. When connected using two camera cables.

[^16]:    1. 3Z4S-LE SV-7525H and 3Z4S-LE SV-10028H can also be used for FH-S $\square 02 / \mathrm{FH}-\mathrm{S} \square 04$
[^17]:    *1. The lengths of the fields of vision given in the optical charts are the lengths of the $Y$ axis
    *2. The vertical axis represents WD for small cameras.

[^18]:    *1 A parallel cable for controllers with binary outputs is also available (ZW-XCP2E). Please contact your OMRON sales representative for details.

[^19]:    ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
    To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

[^20]:    ${ }^{1}$ Changing event levels for controller errors is supported by version 1.04 or higher.
    *2 Displaying comments for members of arrays, structures and unions and displaying long comments for variables (up to five lines) are supported by version 1.04 or higher.
    ${ }^{* 3}$ Changing the length of the displayed variable comments is supported by version 1.05 or higher.
    ${ }^{*}$ * Creating programs in a library file is supported by version 1.06 or higher.
    ${ }^{5}$ Supported only by the Sysmac Studio version 1.08 or higher.
    *6 The .csm format is supported by version 1.04 or higher. The size of a csm file is smaller than the size of the smc file
    *7 Merging detailed comparison results is supported by version 1.03 or higher.
    *8 Changing present values in the ladder editor or ST editor is supported by version 1.03 or higher.
    *9 Changing the colors of graph lines is supported by version 1.01 or higher.
    ${ }^{* 10}$ Consecutively reading and displaying continuous trace results from more than one file is supported by version 1.05 or higher.
    ${ }^{* 11}$ MATLAB ${ }^{\circledR} /$ Simulink R2013a or higher is required.
    ${ }^{* 12}$ CX-Designer version 3.41 or higher is required.
    ${ }^{* 13}$ Individual selection of the retained variables to restore is supported by version 1.05 or higher.

[^21]:    *1 Supported only by the Sysmac Studio version 1.08 or higher.
    *2 Supported only by the Sysmac Studio version 1.10 or higher.
    Note: Supported only by Sysmac Studio version 1.07 or higher.

[^22]:    Note: Supported only by the Sysmac Studio version 1.10 or higher.

[^23]:    1 One license is required per computer
    Note: Supported only by the NJ-series CPU units with unit version 1.01 or higher and the SYSMAC Gateway version 1.31 or higher.

